Awesome
Generalized Clustering and Multi-Manifold Learning (GCML)
The code includes the following modules:
- Datasets (MNIST-full, MNIST-test, USPS, Fashion-MNIST, Reuters-10k, HAR, and Pendigits)
- Training for GCML
- Evaluation metrics
- Visualisation
Requirements
- pytorch == 1.3.1
- scipy == 1.3.1
- numpy == 1.18.5
- scikit-learn == 0.21.3
- matplotlib == 3.1.1
Description
-
main.py
- pretrain() -- Pretraining the model with self-reconstruction Loss
- train() -- End-to-end training of the GCML model
- test() -- Test generalization performance on out-of-sample (testing sample)
-
autotrain.py -- Scripts for automatic testing on seven datasets
-
dataset.py
- Dataset() -- Load data of selected dataset
-
evaluation.py
- GetIndicator() -- Auxiliary tool for evaluating metric
-
loss.py
- Loss_calculate() -- Calculate losses: ℒ<sub>LIS</sub>, ℒ<sub>rank</sub>, ℒ<sub>AE</sub>, ℒ<sub>align</sub>
-
model.py
- AutoEncoder() -- The architecture used in this work
- GCML() -- Calculation Q distribution and P distribution
-
utils.py
- visualize() -- Auxiliary tools for visualizing intermediate results
- Clustering() -- For initializing the clustering centers
Dataset
The datasets used in this paper are available in:
https://drive.google.com/file/d/1nNenJQVBJ-R4B6rs_K_YxGrVyZq4kAfz/view?usp=sharing
Running the code
-
Install the required dependency packages
-
To get the results on seven datasets, run
python autotrain.py
- To get the metrics and visualisation, refer to
../plots/dataset/pics/
where the dataset is one of the seven datasets (MNIST-full, MNIST-test, USPS, Fashion-MNIST, Reuters-10k, HAR, and Pendigits)
Citation
If you find this project useful for your research, please use the following BibTeX entry.
@inproceedings{wu2022generalized,
title={Generalized Clustering and Multi-Manifold Learning with Geometric Structure Preservation},
author={Wu, Lirong and Liu, Zicheng and Xia, Jun and Zang, Zelin and Li, Siyuan and Li, Stan Z},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={139--147},
year={2022}
}