Home

Awesome

Group-wise Inhibition based Feature Regularization for Robust Classification (ICCV 2021)

arXiv Paper

Requirements

Datasets

    mkdir -p ./data/cifar
    curl -O https://zenodo.org/record/2535967/files/CIFAR-10-C.tar
    curl -O https://zenodo.org/record/3555552/files/CIFAR-100-C.tar
    tar -xvf CIFAR-100-C.tar -C data/cifar/
    tar -xvf CIFAR-10-C.tar -C data/cifar/

Usage

python main.py --dataset CIFAR10 --data_root /dataset/CIFAR10/ --gpu_id 0
python main.py --dataset CIFAR100 --data_root /dataset/CIFAR100/ --gpu_id 0

Trained Weights

The trained model weights are available in current directory.

./trained_weights/CIFAR-10_resnext29.pth
./trained_weights/CIFAR-100_resnext29.pth

A more complete repo is coming soon

The current repository is the version originally submitted to CMT as supplementary materials.

We are working to update the code (DDP training on ImageNet, adversarial training, etc.) and model parameters, making them easy-to-use.

Citation

Please cite our work if it's useful for your research.

@inproceedings{liu2021group,
  title={Group-wise Inhibition based Feature Regularization for Robust Classification},
  author={Liu, Haozhe and Wu, Haoqian and Xie, Weicheng and Liu, Feng and Shen, Linlin},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={478--486},
  year={2021}
}