Awesome
PointMixer: MLP-Mixer for Point Cloud Understanding
This is an official implementation for the paper,
PointMixer: MLP-Mixer for Point Cloud Understanding<br/> Jaesung Choe*, Chunghyun Park*, Francois Rameau, Jaesik Park, and In So Kweon<br/> European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 2022<br/> [Paper] [Video] [VideoSlide] [Poster]
<br/>
(*: equal contribution)
(TL;DR) Pytorch implementation of PointMixer
:zap: and Point Transformer
:zap:
We are currently updating this repository :fire:
<details> <summary>Click to expand!</summary>- semseg<br/>
-
methods-
pointmixer -
point transformer
-
- s3dis weights
- scannet weights
- logger option (tensorboard / neptune)
-
- objcls<br/>
- recon<br/>
Features
1. Universal point set operator: intra-set, inter-set, and hier-set mixing <br/>
- Newly revisit the use of K-Nearest Neighbors <br/>
- Can process arbitrary number of points <br/> <img src="./fig/universal point set operator.PNG" width="560" > <br/>
2. Symmetric encoder-decoder network for point clouds <br/>
- Maintain the hierarchical relation among points <br/>
- Design learning-based transition up/down layers (i.e., hier-set mixing) <br/> <img src="./fig/symmetric.PNG" width="572" > <br/>
3. Parameter efficient design (6.5M) <br/>
<img src="./fig/arch.PNG" width="617" > <br/>
References
@article{choe2021pointmixer,
title={PointMixer: MLP-Mixer for Point Cloud Understanding},
author={Choe, Jaesung and Park, Chunghyun and Rameau, Francois and Park, Jaesik and Kweon, In So},
journal={arXiv preprint arXiv:2111.11187},
year={2021}
}