Home

Awesome

Pseudo Label-Guided Model Inversion Attack via Conditional Generative Adversarial Network

This repo is the official Pytorch implementation for the paper <a href="https://arxiv.org/abs/2302.09814">Pseudo Label-Guided Model Inversion Attack via Conditional Generative Adversarial Network</a> (AAAI 2023 Oral).

framework

Requirement

Install the environment as follows:

# create conda environment
conda create -n PLG_MI python=3.9
conda activate PLG_MI
# install pytorch 
conda install pytorch==1.10.0 torchvision==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
# install other dependencies
pip install -r requirements.txt

Preparation

Dataset

Models

Top-n Selection Strategy

To get the pseudo-labeled public data using top-n selection strategy, pealse run the top_n_selection.py as follows:

python top_n_selection.py --model=VGG16 --data_name=ffhq --top_n=30 --save_root=reclassified_public_data

Pseudo Label-Guided cGAN

To train the conditional GAN in stage-1, please run the train_cgan.py as follows:

python train_cgan.py \
--data_name=ffhq \
--target_model=VGG16 \
--calc_FID \
--inv_loss_type=margin \
--max_iteration=30000 \
--alpha=0.2 \
--private_data_root=./datasets/celeba_private_domain \
--data_root=./reclassified_public_data/ffhq/VGG16_top30 \
--results_root=PLG_MI_Results

The checkpoints can be found at: https://drive.google.com/drive/folders/1qDvl7i6_U7xoaduUbeEzTSuYXWpxvvXt?usp=sharing

(All checkpoints of PLG-MI can be found at: https://drive.google.com/drive/folders/1AVdJ0ZrrW9iutCh-zrCKVkLuzD6OZGB6?usp=sharing)

Image Reconstruction

To reconstruct the private images of specified class using the trained generator, pealse run the reconstruct.py as follows:

python reconstruct.py \
--model=VGG16 \
--inv_loss_type=margin \
--lr=0.1 \
--iter_times=600 \
--path_G=./PLG_MI_Results/ffhq/VGG16/gen_latest.pth.tar \
--save_dir=PLG_MI_Inversion

Examples of reconstructed face images

examples

Citation

If you find this repository useful for your work, please consider citing it as follows:

@article{yuan2023pseudo,
  title={Pseudo Label-Guided Model Inversion Attack via Conditional Generative Adversarial Network},
  author={Yuan, Xiaojian and Chen, Kejiang and Zhang, Jie and Zhang, Weiming and Yu, Nenghai and Zhang, Yang},
  journal={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={37},
  number={3},
  pages={3349-3357},
  year={2023}
}