Home

Awesome

COCO Dataset 2018 Stuff Segmentation Challenge

Internship project in Bennett University under Leadinginadi.ai

Getting Started

Problem Statement :-<br/> To perform Semantic Segmentation of Stuff classes.The COCO Stuff Segmentation Task is designed to push the state of the art in semantic segmentation of stuff classes.

Prerequisites and installing

pip install tensorflow-gpu<br/> pip install tqdm<br/> pip install keras<br/> pip install keras-segmentation<br/>

Dataset format

You need to make two folders<br/>

Images Folder - For all the training images<br/> Annotations Folder - For the corresponding ground truth segmentation images<br/> The filenames of the annotation images should be same as the filenames of the RGB images.<br/>

Usage via command line

Visualizing the prepared data

python -m keras_segmentation verify_dataset \
 --images_path="dataset1/images_prepped_train/" \
 --segs_path="dataset1/annotations_prepped_train/"  \
 --n_classes=50
python -m keras_segmentation visualize_dataset \
 --images_path="dataset1/images_prepped_train/" \
 --segs_path="dataset1/annotations_prepped_train/"  \
 --n_classes=50

Training the Model

python -m keras_segmentation train \
--checkpoints_path="path_to_checkpoints" \
--train_images="dataset1/images_prepped_train/" \
--train_annotations="dataset1/annotations_prepped_train/" \
--val_images="dataset1/images_prepped_test/" \
--val_annotations="dataset1/annotations_prepped_test/" \
--n_classes=300 \
--input_height=320 \
--input_width=640 \
--model_name="pspnet"

Getting the predictions

python -m keras_segmentation predict \
 --checkpoints_path="path_to_checkpoints" \
 --input_path="dataset1/images_prepped_test/" \
 --output_path="path_to_predictions"

References

  1. https://github.com/divamgupta/image-segmentation-keras<br/>
  2. https://github.com/GeorgeSeif/Semantic-Segmentation-Suite<br/>
  3. https://github.com/aurora95/Keras-FCN<br/>
  4. http://cocodataset.org/#stuff-2018<br/>
  5. https://arxiv.org/abs/1612.03716<br/>