Home

Awesome

<div align="center"> <p> <a align="left" href="https://ultralytics.com/yolov5" target="_blank"> <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a> </p> <br> <div> <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a> <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> <br> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a> </div> <br> <p> YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. </p> <div align="center"> <a href="https://github.com/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/> </a> <img width="2%" /> <a href="https://www.linkedin.com/company/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/> </a> <img width="2%" /> <a href="https://twitter.com/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/> </a> <img width="2%" /> <a href="https://www.producthunt.com/@glenn_jocher"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/> </a> <img width="2%" /> <a href="https://youtube.com/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/> </a> <img width="2%" /> <a href="https://www.facebook.com/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/> </a> <img width="2%" /> <a href="https://www.instagram.com/ultralytics/"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/> </a> </div> <!-- <a align="center" href="https://ultralytics.com/yolov5" target="_blank"> <img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a> --> </div>

<div align="center">Documentation</div>

See the YOLOv5 Docs for full documentation on training, testing and deployment.

<div align="center">Quick Start Examples</div>

<details open> <summary>Install</summary>

Clone repo and install requirements.txt in a Python>=3.7.0 environment, including PyTorch>=1.7.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install
</details> <details open> <summary>Inference</summary>

YOLOv5 PyTorch Hub inference. Models download automatically from the latest YOLOv5 release.

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
</details> <details> <summary>Inference with detect.py</summary>

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

python detect.py --source 0  # webcam
                          img.jpg  # image
                          vid.mp4  # video
                          path/  # directory
                          path/*.jpg  # glob
                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
</details> <details> <summary>Training</summary>

The commands below reproduce YOLOv5 COCO results. Models and datasets download automatically from the latest YOLOv5 release. Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU (Multi-GPU times faster). Use the largest --batch-size possible, or pass --batch-size -1 for YOLOv5 AutoBatch. Batch sizes shown for V100-16GB.

python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
                                       yolov5s                                64
                                       yolov5m                                40
                                       yolov5l                                24
                                       yolov5x                                16
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png"> </details> <details open> <summary>Tutorials</summary> </details>

<div align="center">Environments</div>

Get started in seconds with our verified environments. Click each icon below for details.

<div align="center"> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/> </a> <a href="https://www.kaggle.com/ultralytics/yolov5"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/> </a> <a href="https://hub.docker.com/r/ultralytics/yolov5"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/> </a> <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/> </a> <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/> </a> </div>

<div align="center">Integrations</div>

<div align="center"> <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/> </a> <a href="https://roboflow.com/?ref=ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/> </a> </div>
Weights and BiasesRoboflow ⭐ NEW
Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & BiasesLabel and export your custom datasets directly to YOLOv5 for training with Roboflow
<!-- ## <div align="center">Compete and Win</div> We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes! <p align="center"> <a href="https://github.com/ultralytics/yolov5/discussions/3213"> <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a> </p> -->

<div align="center">Why YOLOv5</div>

<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p> <details> <summary>YOLOv5-P5 640 Figure (click to expand)</summary> <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p> </details> <details> <summary>Figure Notes (click to expand)</summary> </details>

Pretrained Checkpoints

Modelsize<br><sup>(pixels)mAP<sup>val<br>0.5:0.95mAP<sup>val<br>0.5Speed<br><sup>CPU b1<br>(ms)Speed<br><sup>V100 b1<br>(ms)Speed<br><sup>V100 b32<br>(ms)params<br><sup>(M)FLOPs<br><sup>@640 (B)
YOLOv5n64028.045.7456.30.61.94.5
YOLOv5s64037.456.8986.40.97.216.5
YOLOv5m64045.464.12248.21.721.249.0
YOLOv5l64049.067.343010.12.746.5109.1
YOLOv5x64050.768.976612.14.886.7205.7
YOLOv5n6128036.054.41538.12.13.24.6
YOLOv5s6128044.863.73858.23.612.616.8
YOLOv5m6128051.369.388711.16.835.750.0
YOLOv5l6128053.771.3178415.810.576.8111.4
YOLOv5x6<br>+ TTA1280<br>153655.0<br>55.872.7<br>72.73136<br>-26.2<br>-19.4<br>-140.7<br>-209.8<br>-
<details> <summary>Table Notes (click to expand)</summary> </details>

<div align="center">Contribute</div>

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!

<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>

<div align="center">Contact</div>

For YOLOv5 bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please visit https://ultralytics.com/contact.

<br> <div align="center"> <a href="https://github.com/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/> </a> <img width="3%" /> <a href="https://www.linkedin.com/company/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/> </a> <img width="3%" /> <a href="https://twitter.com/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/> </a> <img width="3%" /> <a href="https://www.producthunt.com/@glenn_jocher"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/> </a> <img width="3%" /> <a href="https://youtube.com/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/> </a> <img width="3%" /> <a href="https://www.facebook.com/ultralytics"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/> </a> <img width="3%" /> <a href="https://www.instagram.com/ultralytics/"> <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/> </a> </div>