Awesome
Radiology Report Generation with a Learned Knowledge Base and Multi-modal Alignment
基于自学习知识库和多模态对其机制的医学报告生成
Requirements
Python >= 3.6
Pytorch >= 1.7
torchvison
- Microsoft COCO Caption Evaluation Tools
- CheXpert
conda activate tencent
Data
Download IU and MIMIC-CXR datasets, and place them in data
folder.
Folder Structure
- config : setup training arguments and data path
- data : store IU and MIMIC dataset
- models: basic model and all our models
- modules:
- the layer define of our model
- dataloader
- loss function
- metrics
- tokenizer
- some utils
- pycocoevalcap: Microsoft COCO Caption Evaluation Tools
Training and Testing
- The validation and testing will run after training.
- More options can be found in
config/opts.py
file. - The model will be trained using command:
- $dataset_name:
- iu: IU dataset
- mimic: MIMIC dataset
-
full model
python main.py --cfg config/{$dataset_name}_resnet.yml --expe_name {$experiment name} --label_loss --rank_loss --version 12
-
basic model
python main_basic.py --cfg config/{$dataset_name}_resnet.yml --expe_name {$experiment name} --label_loss --rank_loss --version 91
-
our model without the learned knowledge base
python main.py --cfg config/{$dataset_name}_resnet.yml --expe_name {$experiment name} --label_loss --rank_loss --version 92
-
for the model without multi-modal alignment You remove
--label_loss
or--rank_loss
from the commonds.
- $dataset_name:
Citation
Shuxin Yang, Xian Wu, Shen Ge, ZhuoZhao Zheng, S. Kevin Zhou, Li Xiao,Radiology Report Generation with a Learned Knowledge Base and Multi-modal Alignment. Medical Image Analysis,2023
Contact
If you have any problem with the code, please contact Shuxin Yang(aspenstarss@gmail.com) or Li Xiao(andrew.lxiao@gmail.com).