Home

Awesome

Kinematic-aware Hierarchical Attention Network for Human Pose Estimation in Videos (WACV 2023)

The framework of HANet

https://openaccess.thecvf.com/content/WACV2023/papers/Jin_Kinematic-Aware_Hierarchical_Attention_Network_for_Human_Pose_Estimation_in_Videos_WACV_2023_paper.pdf

Contributions

Getting Started

Environment Requirement

Clone the repo:

https://github.com/KyungMinJin/HANet.git

Install the HANet requirements using conda:

# conda
conda create env --name HANet python=3.6
conda activate HANet
pip install -r requirements.txt

Prepare Data

Sub-JHMDB data used in our experiment can be downloaded here. Refer to Official DeciWatch Repository for more details about the data arrangement.

Google Drive

DatasetPose Estimator3D Pose2D PoseSMPL
Sub-JHMDBSimpleBaseline

Training

Note that datasets should be downloaded and prepared before training.

Run the commands below to start training on Sub-JHMDB:

python train.py --cfg configs/config_jhmdb_simplebaseline_2D.yaml --dataset_name jhmdb --estimator simplebaseline --body_representation 2D

Evaluation

PWC PWC PWC PWC

Results on 2D Pose:

DatasetEstimatorPCK 0.05 (Input/Output):arrow_up:PCK 0.1 (Input/Output):arrow_up:PCK 0.2 (Input/Output):arrow_up:Checkpoint
Sub-JHMDBsimplebaseline57.3%/91.9%81.6%/98.3%93.9%/99.6%Google Drive

Results on 3D Pose:

DatasetEstimatorMPJPE (Input/Output):arrow_down:Accel (Input/Output):arrow_down:
Human3.6MFCN54.6/52.819.2/1.4
Human3.6MMhformer38.3/35.40.8/0.8
3DPWPARE78.9/77.16.9/6.8
AIST++SPIN107.7/69.25.7/5.4

Visualization

We prepare all visualization codes as soon as possible.

2D Pose

Visualize comparison on Sub-JHMDB

visualize of Sub-JHMDB 2D SimpleBaseline

3D Pose

Visualize comparison on AIST++

visualize of AIST++ 3D SPIN

3D Body Mesh Recovery

Visualize comparison on 3DPW

visualize of AIST++ SMPL SPIN

Visualize comparison on AIST++

visualize of AIST++ SMPL SPIN

Citation

@inproceedings{jin2023kinematic,
  title={Kinematic-aware Hierarchical Attention Network for Human Pose Estimation in Videos},
  author={Jin, Kyung-Min and Lim, Byoung-Sung and Lee, Gun-Hee and Kang, Tae-Kyung and Lee, Seong-Whan},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={5725--5734},
  year={2023}
}

Acknowledgement