Awesome
Swift-SRGAN - Rethinking Super-Resolution for real-time inference
This repository is the official implementation of the paper "Swift-SRGAN - Rethinking Super-Resolution for real-time inference" https://arxiv.org/abs/2111.14320
Architecture
<p align="center"> <img src="https://github.com/Koushik0901/Swift-SRGAN/blob/master/image-samples/SwiftSRGAN-architecture.png" width="850" height="450" /> </p>Super-Resolution Examples
<p align="center"> <b><i>All images on the left side are the original high resolution images and images on the right side are the 4x super-resolution output from our model.</i></b> <p align="center"> <img src="https://github.com/Koushik0901/Swift-SRGAN/blob/master/image-samples/4x_samples/baryon.png" width="800" height="400" /> </p> <p align="center"> <img src="https://github.com/Koushik0901/Swift-SRGAN/blob/master/image-samples/4x_samples/dwight.png" width="800" height="400" /> </p> <p align="center"> <img src="https://github.com/Koushik0901/Swift-SRGAN/blob/master/image-samples/4x_samples/steve.png" width="800" height="450" /> </p>Pre-trained Models
Check the releases tab for pre-trained 4x and 2x upsampling generator models
Training
-
install requirements with:
pip install -r requirements.txt
-
Train the model by executing:
cd swift-srgan python train.py --upscale_factor 4 --crop_size 96 --num_epochs 100
-
To convert the generator model to torchscript, run
python optimize-graph.py --ckpt_path ./checkpoints/netG_4x_epoch100.pth.tar --save_path ./checkpoints/optimized_model.pt --device cuda
Please cite our article
@article{krishnan2021swiftsrgan,
title={SwiftSRGAN--Rethinking Super-Resolution for Efficient and Real-time Inference},
author={Krishnan, Koushik Sivarama and Krishnan, Karthik Sivarama},
journal={arXiv preprint arXiv:2111.14320},
year={2021}
}