Awesome
CrossTReS
This is the repo for paper "Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting", KDD 2022.
Step 1: Data
Go to data
repo and unzip the crosstres_data.zip
file.
Step 2: Run the scripts in src
The structures of src
are as follows:
model.py
: Contains implementation of base models.utils.py
: Necessary utility functions.run_crosstres.py
: The implementation of CrossTReS. The requirements are:- Python=3.8
- PyTorch=1.9.0
- DGL=0.6.1
- sklearn
run_crosstres_rt.py
: The implementation of CrossTReS which uses RegionTrans for fine-tuning.gen_rt_dict.py
: This script generates the dictionary for RegionTrans to do matching.
You can check the tunable parameters in run_crosstres.py
and run_crosstres_rt.py
.
Note: Runningrun_crosstres.py
requires approximately 10GB GPU memory with batch_size=32. You can reduce batch_size to reduce memory cost.
Procedures to run the scripts
run_crosstres.py
:python run_crosstres.py --SET_PARAMETERS
.run_crosstres_rt.py
:- First, run
python gen_rt_dict.py --metric poi --source [NY, CHI] --target [DC]
. You will get a file under thesrc/rt_dict
folder. - Then, run
python run_crosstres_rt.py --SET_PARAMETERS --rt_dict poi
.
- First, run