Awesome
Beyond the Data Imbalance: Employing the Heterogeneous Datasets for Vehicle Maneuver.
This page contains the drone dataset used in our paper
Paper │ Documentation │ Download │ Tutorials
Contents
Overview
<div align="center"> <img src="./graphics/demo.gif" width="426"/> </div>This is the drone dataset captured over several intersections in Daejeon, South Korea. The dataset contains two directories: raw
contains the trajectory data for the tracked objects in the intersection, while processed
contains the processed information from the raw data used to train the model in our paper.
Getting Started
Download
You can download the dataset from the releases page. Extract the zip files and make sure the dataset directory structure is as follows:
data_root
├── processed
│ ├── conversion
│ ├── link_idx
│ ├── maneuver_index
│ ├── nearest_outlet_state
│ ├── outlet_node_state
│ ├── total_traj
│ ├── plots
│ └── folder_tree
└── raw
├── background
├── landmark
├── mapSegmentation
├── recordingMeta
├── segmentation
├── tracks
└── tracksMeta
Examples
Please take a look at the example notebook on how to use the information contained in the dataset.
Dataset Information
Statistics
- No. of tracked objects at each intersection
Intersection Id | Cars | Pedestrian | Bicycle |
---|---|---|---|
1 | 788 | 135 | 46 |
3 | 71 | 0 | 1 |
4 | 184 | 0 | 5 |
5 | 110 | 105 | 8 |
6 | 77 | 90 | 4 |
- No. of trajectories for each class
Cars | Pedestrian | Bicycle |
---|---|---|
10,555 | 4,353 | 571 |
$*$ Trajectory: 5 second long for 10hz interval.
<!-- | Dataset | Location | Trajectory Counts | Location Counts | Included | FPS | Method | :---: | :---: | :---: | :---: | :---: | : ---: | : ---: | | 1 | 788 | 135 | 46 | | 3 | 71 | 0 | 1 | | 4 | 184 | 0 | 5 | | 5 | 110 | 105 | 8 | | 6 | 77| 90 | 4 | -->Cite
If you find this drone dataset or our paper helpful for your own research, please consider citing:
@inproceedings{Beyond2024Jeon,
title={Beyond the Data Imbalance: Employing the Heterogeneous Datasets for Vehicle Maneuver Prediction},
author={Hyeongseok Jeon, Sanmin Kim, Abi Rahman Syamil, Junsoo Kim and Dongsuk Kum},
booktitle={Proceedings of the European Conference on Computer Vision},
year={2024}
}