Home

Awesome

<h2 align="center">LoveNAS: Towards Multi-Scene Land-Cover Mapping via Hierarchical Searching Adaptive Network</h2> <h5 align="right">by <a href="https://junjue-wang.github.io/homepage/">Junjue Wang</a>, <a href="http://rsidea.whu.edu.cn/">Yanfei Zhong</a>, <a href="http://zhuozheng.top/">Zhuo Zheng</a>, Yuting Wan, Ailong Ma and Liangpei Zhang</h5>

[Paper], [Dataset], [BibTeX]

This is an official implementation of LoveNAS.

<div align="center"> <img width="100%" src="https://github.com/Junjue-Wang/resources/blob/main/LoveNAS/framework.png?raw=true"> </div>

Environments:

pip install --upgrade git+https://gitee.com/zhuozheng/ever_lite.git@v1.4.5
pip install git+https://github.com/qubvel/segmentation_models.pytorch
pip install mmcv-full==1.4.7 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11.0/index.html

The Swin-Transformer pretrained weights can be prepared following MMSegmentation.

Search architecture

bash ./scripts/nas_loveda.sh

Train model

The searched architectures and transferred encoder weights should be downloaded.

bash ./scripts/train_loveda.sh

Predict test results

The searched architectures and LoveNAS model weights should be downloaded. Submit the test results to LoveDA Semantic Segmentation Challenge to get scores.

bash ./scripts/submit_loveda.sh

LoveDA

The LoveDA dataset can be downloaded here.

Submit the test results to LoveDA Semantic Segmentation Challenge to get scores.

Search-ConfigBackboneTrain-ConfigParams (M)mIoU(%)Download
configMobileNetV2config3.83750.60log&ckpt (pwd:2333)
configResNet-50config30.49152.34log&ckpt (pwd:2333)
configEfficientNet-B3config14.19052.05log&ckpt (pwd:2333)
configSwin-Baseconfig92.43553.76log&ckpt (pwd:2333)

FloodNet

The FloodNet dataset can be downloaded here.

The train data should be prepared using prepare_floodnet.py.

Search-ConfigBackboneTrain-ConfigParams (M)mIoU(%)Download
configMobileNetV2config12.07270.73log&ckpt (pwd:2333)
configResNet-50config38.45772.54log&ckpt (pwd:2333)
configEfficientNet-B3config18.85172.69log&ckpt (pwd:2333)
configSwin-Baseconfig97.70173.79log&ckpt (pwd:2333)

Citation

If you use LoveNAS in your research, please cite the following papers.

    @article{wang2024lovenas,
      title={LoveNAS: Towards multi-scene land-cover mapping via hierarchical searching adaptive network},
      author={Wang, Junjue and Zhong, Yanfei and Ma, Ailong and Zheng, Zhuo and Wan, Yuting and Zhang, Liangpei},
      journal={ISPRS Journal of Photogrammetry and Remote Sensing},
      volume={209},
      pages={265--278},
      year={2024},
      publisher={Elsevier}
    }
    @inproceedings{wang2021loveda,
        title={Love{DA}: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation},
        author={Junjue Wang and Zhuo Zheng and Ailong Ma and Xiaoyan Lu and Yanfei Zhong},
        booktitle={Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks},
        editor = {J. Vanschoren and S. Yeung},
        year={2021},
        volume = {1},
        pages = {},
        url={https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/4e732ced3463d06de0ca9a15b6153677-Paper-round2.pdf}
    }
    @article{wang2020rsnet,
      title={RSNet: The search for remote sensing deep neural networks in recognition tasks},
      author={Wang, Junjue and Zhong, Yanfei and Zheng, Zhuo and Ma, Ailong and Zhang, Liangpei},
      journal={IEEE Transactions on Geoscience and Remote Sensing},
      volume={59},
      number={3},
      pages={2520--2534},
      year={2020},
      publisher={IEEE}
    }