Awesome
<h2 align="center">FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery</h2> <h5 align="right">by Ailong Ma, <a href="https://junjue-wang.github.io/homepage/">Junjue Wang*</a>, <a href="http://rsidea.whu.edu.cn/">Yanfei Zhong*</a> and <a href="http://zhuozheng.top/">Zhuo Zheng</a></h5> <div align="center"> <img src="https://github.com/Junjue-Wang/FactSeg/blob/master/imgs/framework.png"><br><br> </div> <div align="center"> <img src="https://github.com/Junjue-Wang/FactSeg/blob/master/imgs/result.png"><br><br> </div>This is an official implementation of FactSeg in our TGRS paper " <a href="https://www.researchgate.net/publication/353357122_FactSeg_Foreground_Activation_Driven_Small_Object_Semantic_Segmentation_in_Large-Scale_Remote_Sensing_Imagery"> FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery</a>"
Citation
If you use FactSeg in your research, please cite our TGRS paper.
@ARTICLE{factseg2022,
author={Ma, Ailong and Wang, Junjue and Zhong, Yanfei and Zheng, Zhuo},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={FactSeg: Foreground Activation-Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery},
year={2022},
volume={60},
number={},
pages={1-16},
doi={10.1109/TGRS.2021.3097148}}
This is follow-up work of our FarSeg (CVPR2020).
@inproceedings{zheng2020foreground,
title={Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery},
author={Zheng, Zhuo and Zhong, Yanfei and Wang, Junjue and Ma, Ailong},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={4096--4105},
year={2020}
}
Getting Started
Install SimpleCV
pip install --upgrade git+https://github.com/Z-Zheng/SimpleCV.git
Requirements:
- pytorch >= 1.1.0
- python >=3.6
Prepare iSAID Dataset
ln -s </path/to/iSAID> ./isaid_segm
Evaluate Model
1. download pretrained weight in Google Drive
2. move weight file to log directory
mkdir -vp ./log/
mv ./factseg50.pth ./log/model-60000.pth
3. inference on iSAID val
bash ./scripts/eval_factseg.sh
Train Model
bash ./scripts/train_factseg.sh