Home

Awesome

TabularTDLearning

CI codecov

This repository provides Julia implementations of the following Temporal-Difference reinforcement learning algorithms:

Note that these solvers are tabular, and will only work with MDPs that have discrete state and action spaces.

Installation

Pkg.add("TabularTDLearning")

Example

using POMDPs
using TabularTDLearning
using POMDPModels
using POMDPTools

mdp = SimpleGridWorld()
# use Q-Learning
exppolicy = EpsGreedyPolicy(mdp, 0.01)
solver = QLearningSolver(exploration_policy=exppolicy, learning_rate=0.1, n_episodes=5000, max_episode_length=50, eval_every=50, n_eval_traj=100)
policy = solve(solver, mdp)
# Use SARSA
solver = SARSASolver(exploration_policy=exppolicy, learning_rate=0.1, n_episodes=5000, max_episode_length=50, eval_every=50, n_eval_traj=100)
policy = solve(solver, mdp)
# Use SARSA lambda
solver = SARSALambdaSolver(exploration_policy=exppolicy, learning_rate=0.1, lambda=0.9, n_episodes=5000, max_episode_length=50, eval_every=50, n_eval_traj=100)
policy = solve(solver, mdp)
# Use Prioritized Sweeping
mdp_ps = SimpleGridWorld(tprob=1.0)
solver = PrioritizedSweepingSolver(exploration_policy=exppolicy, learning_rate=0.1, n_episodes=5000, max_episode_length=50, eval_every=50, n_eval_traj=100,pq_threshold=0.5)
policy = solve(solver,mdp_ps)