Home

Awesome

BAM and CBAM

Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

Updates & Notices

Requirement

The code is validated under below environment:

How to use

ResNet50 based examples are included. Example scripts are included under ./scripts/ directory. ImageNet data should be included under ./data/ImageNet/ with foler named train and val.

# To train with BAM (ResNet50 backbone)
python train_imagenet.py --ngpu 4 --workers 20 --arch resnet --depth 50 --epochs 100 --batch-size 256 --lr 0.1 --att-type BAM --prefix RESNET50_IMAGENET_BAM ./data/ImageNet
# To train with CBAM (ResNet50 backbone)
python train_imagenet.py --ngpu 4 --workers 20 --arch resnet --depth 50 --epochs 100 --batch-size 256 --lr 0.1 --att-type CBAM --prefix RESNET50_IMAGENET_CBAM ./data/ImageNet

Resume with checkpoints

For validation, please use the script as follows

python train_imagenet.py --ngpu 4 --workers 20 --arch resnet --depth 50 --att-type CBAM --prefix EVAL --resume $CHECKPOINT_PATH$ --evaluate ./data/ImageNet

Other implementations