Awesome
Distribution Alignment Optimization through Neural Collapse for Long-tailed Classification (ICML, 2024)
by Jintong Gao<sup>1</sup>, He Zhao<sup>2</sup>, Dandan Guo<sup>1</sup>, Hongyuan Zha<sup>3</sup>,
<sup>1</sup>Jilin University, <sup>2</sup>CSIRO's Data61, <sup>3</sup>The Chinese University of Hong Kong, Shenzhen
This is the official implementation of Distribution Alignment Optimization through Neural Collapse for Long-tailed Classification in PyTorch.
Requirements:
All codes are written by Python 3.8 with
PyTorch >=1.5
torchvision >=0.6
TensorboardX 1.9
Numpy 1.17.3
Training
To train the model(s) in the paper, run this command:
CIFAR-LT
CIFAR-10-LT (CE-DRW + DisA):
python cifar_train.py --dataset cifar10 --num_classes 10 --loss_type CE --train_rule DRW --lamda 0.1 --gpu 0
CIFAR-100-LT (CE-DRW + DisA):
python cifar_train.py --dataset cifar100 --num_classes 100 --loss_type CE --train_rule DRW --lamda 0.1 --gpu 0
Evaluation
To evaluate my model, run:
python test.py --dataset cifar10 --num_classes 10 --gpu 0 --resume model_path
Citation
If you find our paper and repo useful, please cite our paper.
@inproceedings{
Gao2024DisA,
title={Distribution Alignment Optimization through Neural Collapse for Long-tailed Classification},
author={Jintong Gao and He Zhao and Dandan Guo and Hongyuan Zha},
booktitle={International Conference on Machine Learning (ICML)},
year={2024}
}
Acknowledgement
Contact
If you have any questions when running the code, please feel free to concat us by emailing
- Jintong Gao (gaojt20@mails.jlu.edu.cn)