Home

Awesome

<p align="center"> <img src="./demo/MIN1PIPE_Slider.jpg" alt="slider" width="800px"/> </p>

MIN1PIPE (reads "minipipe")

A MINiscope 1-photon-based Calcium Imaging Signal Extraction PIPEline.

MIN1PIPE is a fully automatic, Matlab-based toolbox, solving the full range problems in 1-photon calcium imaging in one package: data enhancementmovement morrectionsignal extraction. It requires minimal parameter-tuning and integrates the semi-auto options. Each inidividual module can also be easily adapted for the 2-photon imaging setting.

Contents

  1. Updates
  2. Introduction and Features
  3. Dependencies
  4. Usage
  5. Dataset
  6. Custom Data
  7. Practical Suggestions
  8. References
  9. Questions

Updates

3/25/2022 New version released (v3.1 & v4.0.1 (beta)): v4.0.1: MIN1PIPE now automatically detects se and spatialr. Please refer to the release notes for syntax. v3.1: latest stable version, with relatively liberal standards of selecting ROIs. Feedbacks regarding the bugs and/or suggestions are welcome.

11/19/2019 New version released (v2-alpha): new neural enhancing module with noise suppression: reduce the effect of sharp background structures. Add new output variable dff for dF/F. Feedbacks regarding the bugs and/or suggestions are welcome.

11/01/2018 New version released: updated movement correction module - balanced the running time for extremely large or shading videos; updated neural enhancing module - introduced dirt-cleaning function for dirty videos (potentially with dirts on the imaging sensor); updated seeds cleansing module - better seeds cleansing filters for seeds selection. Feedbacks regarding the bugs and/or suggestions are welcome.

09/26/2018 Updated data loading interface, for Doric scope videos with bit depth of 16.

07/16/2018 Patch version released. The program auto-detects available memory and processes data in chunk. Integrate fast read&write and memory mapping at key steps. The toolbox is undergoing some beta tests, so please expect frequent updates recently.

08/02/2018 Added guide for manual_seeds_select and real_neuron_select under the secion Usage.

08/16/2018 Added reading interface for .mat file format.

08/23/2018 Fixed bug of manual_seeds_select.


Introduction and Features

MIN1PIPE contains the following three modules:

<p align="center"> <img src="./demo/MIN1PIPE_Graphical_Abstract.jpg" alt="slider" width="600px"/> </p>

Additional Features

Dependencies

This Matlab implementation has the following dependencies (included under utilities):

Additional Matlab toolboxes:

Other modified functions adapted from others are credited the original sources in code documentations.

Usage

Manual Options

Key Parameters:

Procedure Parameters:

Key Outputs:

Other fixed preset parameters can be found in min1pipe.m, and the table in the paper.

Dataset

As a demo, we demonstrate the use of 1-photon calcium imaging video recorded with UCLA miniscope:

demo_min1pipe.m

The same code can also be adapted to custom scripts for the processing.

Here are the visualization of the demo dataset processing:

alt text

Custom Data

To use the code on a custom dataset, no specific requirements are needed. The processed data and the data after movement correction are saved in the same folder of the raw data in ".mat" format, with "_data_processed" and "_reg" as endings separately.

If post-process is selected, there will be an additional ".mat" file created with "_data_processed_refined".

Practical Suggestions

References

Updates

Please cite the MIN1PIPE journal paper if it helps your research.

@article{lu2018MIN1PIPE,
  title={MIN1PIPE: A Miniscope 1-photon-based Calcium Imaging Signal Extraction Pipeline.},
  author={Lu, J., Li, C., Singh-Alvarado, J., Zhou, Z., Fröhlich, F., Mooney, R., & Wang, F.},
  journal={Cell reports},
  volume={23},
  number={12},
  pages={3673--3684},
  year={2018},
  publisher={Elsevier}
}

Archives

The paper is now accepted by Cell Reports.

Please cite the MIN1PIPE paper if it helps your research.

@article{lu2018MIN1PIPE,
  title={MIN1PIPE: A Miniscope 1-photon-based Calcium Imaging Signal Extraction Pipeline.},
  author={Lu, J., Li, C., Singh-Alvarado, J., Zhou, Z., Fröhlich, F., Mooney, R., & Wang, F.},
  journal={bioRxiv, 311548},
  year={2018}
}

or the related arXiv version:

@article{lu2017seeds,
  title={Seeds Cleansing CNMF for Spatiotemporal Neural Signals Extraction of Miniscope Imaging Data},
  author={Lu, Jinghao and Li, Chunyuan and Wang, Fan},
  journal={arXiv preprint arXiv:1704.00793},
  year={2017}
}

Questions?

Please email to min1pipe2018@gmail.com for additional questions.