Awesome
Blur Magnitude Estimator(BME)
This task aims to estimate the blur magnitude for each pixel from a blurry image as below example. The details will be in our ECCV 2024 Paper. The downstream task is our DADeblur for video deblurring.
<p align="center"> <img src="assets/blur_img.png" alt="Blurry Image" width="45%" style="margin-right: 10px;"> <img src="assets/blur_mag.png" alt="Blur Magnitude" width="45%"> </p> <!-- ![Blurry Image](assets/blur_img.png) ![Blur Magnitude](assets/blur_mag.png) -->Prepare BME dataset
In this task, we use the RAFT and GoPro to generate training dataset for BME. The details will be in our ECCV 2024 Paper
python generate_dataset/generate_dataset.py
Pretrained Model Weight
You can download the our model weight from this link BME Model Weight
Dataset Structure
dataset/
├── video1/
│ ├── blur_image/
│ └── blur_mag_np/
├── video2/
│ ├── blur_image/
│ └── blur_mag_np/
├── video3/
│ ├── blur_image/
│ └── blur_mag_np/
Train
python main.py --training_dataset_path="your training dataset" --testing_dataset_path="your testing dataset" --weight_path="weight output path"
Inference
python main.py --infer_dataset_path="your inference dataset" --infer_output_path="your output folder path" --weight_path="model weight path" --test_only