Awesome
Snipper
This is the re-implementation of paper "Snipper: A Spatiotemporal Transformer for Simultaneous Multi-Person 3D Pose Estimation Tracking and Forecasting on a Video Snippet"
Dataset preprocess
- JTA dataset
- MS COCO
- MuCo parsed and composited data by Moon
- MuPoTS [images] [annotations] parsed by Moon
- PoseTrack2018
Dependencies
- compile cuda version of deformable attention module according to Deformable-DETR
cd ./models/ops sh ./make.sh # unit test (should see all checking is True) python test.py
- Python 3.6
- PyTorch 1.7.0
- scipy 1.5.2
Inference
Pre-trained models can be downloaded from Google Drive or OneDrive.
trained models
|-- model/12-06_13-31-59/checkpoint.pth # T=1, encoder_layer=6, decoder_layer=6
|-- model/12-06_20-17-34/checkpoint.pth # T=4, encoder_layer=6, decoder_layer=6
|-- model/12-06_20-18-30/checkpoint.pth # T=4+2, encoder_layer=6, decoder_layer=6
|
|-- model/12-05_06-37-50/checkpoint.pth # T=1, encoder_layer=2, decoder_layer=4
|-- model/12-05_06-39-49/checkpoint.pth # T=4, encoder_layer=2, decoder_layer=4
|-- model/12-05_06-39-03/checkpoint.pth # T=4+2, encoder_layer=2, decoder_layer=4
The model model/12-06_20-17-34/checkpoint.pth # T=4, encoder_layer=6, decoder_layer=6
is used to generate
the three example demos. For new sequence inference, set the following arguments data_dir
to the target folder.
python inference.py \
# the path to trained model
--resume 'model/12-06_20-17-34/checkpoint.pth' \
# path to the test sequence
--data_dir 'demos/seq1' \
# path to save predicitions
--output_dir 'demos' \
# number of observed frames
--num_frames 4 \
# number of forecasting frames
--num_future_frames 0 \
# select snippet every 5 frames (30fps --> 6fps of a snippet)
--seq_gap 5 \
# frame filename to see its heatmaps
--vis_heatmap_frame_name '000005.jpg'
Please remember to remove the comments # ...
before run the command.
Train
Settings to train on multiple datasets (4 observed frames pose tracking only).
python -u -m torch.distributed.launch --nproc_per_node=8 main.py \
--output_dir "$LOG_OUTDIR" \
--dataset_file 'hybrid' \
--posetrack_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/posetrack2018'\
--use_posetrack 1 \
--coco_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/coco' \
--use_coco 1 \
--muco_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/muco' \
--use_muco 1 \
--jta_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/jta_dataset' \
--use_jta 1 \
--panoptic_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/panoptic' \
--use_panoptic 0 \
--protocol 1 \
--pretrained_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/pretrained_models' \
--resume '' \
--input_height 600 \
--input_width 800 \
--seq_max_gap 4 \
--seq_min_gap 4 \
--num_frames 4 \
--num_future_frames 0 \
--max_depth 15 \
--batch_size 2 \
--num_queries 60 \
--num_kpts 15 \
--set_cost_is_human 1 \
--set_cost_root 1 \
--set_cost_root_depth 1 \
--set_cost_root_vis 1 \
--set_cost_joint 1 \
--set_cost_joint_depth 1 \
--set_cost_joint_vis 1 \
--is_human_loss_coef 1 \
--root_loss_coef 5 \
--root_depth_loss_coef 5 \
--root_vis_loss_coef 1 \
--joint_loss_coef 5 \
--joint_depth_loss_coef 5 \
--joint_vis_loss_coef 1 \
--joint_disp_loss_coef 1 \
--joint_disp_depth_loss_coef 1 \
--heatmap_loss_coef 0.001 \
--cont_loss_coef 0.1 \
--eos_coef 0.25 \
--epochs 40 \
--lr_drop 30 \
--lr 0.0001 \
--lr_backbone 0.00001 \
--dropout 0.1 \
--num_feature_levels 3 \
--hidden_dim 384 \
--nheads 8 \
--enc_layers 6 \
--dec_layers 6 \
--dec_n_points 4 \
--enc_n_points 4 \
--use_pytorch_deform 0 \
Settings to train on JTA dataset (4 observed frames pose tracking + 2 future frames motion prediction)
python -u -m torch.distributed.launch --nproc_per_node=8 main.py \
--output_dir "$LOG_OUTDIR" \
--dataset_file 'hybrid' \
--posetrack_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/posetrack2018'\
--use_posetrack 0 \
--coco_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/coco' \
--use_coco 0 \
--muco_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/muco' \
--use_muco 0 \
--jta_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/jta_dataset' \
--use_jta 1 \
--panoptic_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/panoptic' \
--use_panoptic 0 \
--protocol 1 \
--pretrained_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/pretrained_models' \
--resume '' \
--input_height 540 \
--input_width 960 \
--seq_max_gap 4 \
--seq_min_gap 4 \
--num_frames 4 \
--num_future_frames 2 \
--max_depth 60 \
--batch_size 2 \
--num_queries 60 \
--num_kpts 15 \
--set_cost_is_human 1 \
--set_cost_root 5 \
--set_cost_root_depth 5 \
--set_cost_root_vis 0.1 \
--set_cost_joint 1 \
--set_cost_joint_depth 1 \
--set_cost_joint_vis 0.1 \
--is_human_loss_coef 1 \
--root_loss_coef 5 \
--root_depth_loss_coef 5 \
--root_vis_loss_coef 0.1 \
--joint_loss_coef 5 \
--joint_depth_loss_coef 5 \
--joint_vis_loss_coef 0.1 \
--joint_disp_loss_coef 1 \
--joint_disp_depth_loss_coef 1 \
--heatmap_loss_coef 0.001 \
--cont_loss_coef 0.1 \
--eos_coef 0.25 \
--epochs 100 \
--lr_drop 80 \
--lr 0.0001 \
--lr_backbone 0.00001 \
--dropout 0.1 \
--num_feature_levels 3 \
--hidden_dim 384 \
--nheads 8 \
--enc_layers 6 \
--dec_layers 6 \
--dec_n_points 4 \
--enc_n_points 4 \
--use_pytorch_deform 0 \
Settings to train on CMU-Panoptic dataset (4 observed frames pose tracking + 2 future frames motion prediction)
python -u -m torch.distributed.launch --nproc_per_node=8 main.py \
--output_dir "$LOG_OUTDIR" \
--dataset_file 'hybrid' \
--posetrack_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/posetrack2018'\
--use_posetrack 0 \
--coco_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/coco' \
--use_coco 0 \
--muco_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/muco' \
--use_muco 0 \
--jta_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/jta_dataset' \
--use_jta 0 \
--panoptic_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/panoptic' \
--use_panoptic 1 \
--protocol 1 \
--pretrained_dir '/mnt/graphics_ssd/home/minhpvo/Internship/2021/shihaozou/pretrained_models' \
--resume '' \
--input_height 540 \
--input_width 960 \
--seq_max_gap 10 \
--seq_min_gap 10 \
--num_frames 4 \
--num_future_frames 2 \
--max_depth 5 \
--batch_size 2 \
--num_queries 20 \
--num_kpts 15 \
--set_cost_is_human 1 \
--set_cost_root 5 \
--set_cost_root_depth 5 \
--set_cost_root_vis 0.1 \
--set_cost_joint 1 \
--set_cost_joint_depth 1 \
--set_cost_joint_vis 0.1 \
--is_human_loss_coef 1 \
--root_loss_coef 5 \
--root_depth_loss_coef 5 \
--root_vis_loss_coef 0.1 \
--joint_loss_coef 5 \
--joint_depth_loss_coef 5 \
--joint_vis_loss_coef 0.1 \
--joint_disp_loss_coef 1 \
--joint_disp_depth_loss_coef 1 \
--heatmap_loss_coef 0.001 \
--cont_loss_coef 0.1 \
--eos_coef 0.25 \
--epochs 10 \
--lr_drop 8 \
--lr 0.0001 \
--lr_backbone 0.00001 \
--dropout 0.1 \
--num_feature_levels 3 \
--hidden_dim 384 \
--nheads 8 \
--enc_layers 6 \
--dec_layers 6 \
--dec_n_points 4 \
--enc_n_points 4 \
--use_pytorch_deform 0 \
Demos