Awesome
Reward Guided Latent Consistency Distillation
🔥News
- (🔥New) 10/09/2024 We release the training codes!
- (🔥New) 05/28/2024 We release the model weights and the local gradio demo! The model weights can be download from here. We will release other model weights soon!
- 03/18/2024 Our repo for RG-LCD is created. We will release our codes and models very soon!! Please stay tuned!
🏭 Installation
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 diffusers transformers accelerate gradio webdataset accelerate open_clip_torch gradio==3.48.0
✅ Local gradio Demos (Text-to-Image):
Launch the gradio: (For MacOS users, need to set the device="mps" in app.py; For Intel GPU users, set device="xpu" in app.py)
python local_gradio/app.py --model_name MODEL_NAME
You can find the currently available models at here with the prefix RG-LCM
. By default, MODEL_NAME
is set to jiachenli-ucsb/RG-LCM-SD-2.1-768-HPSv2.1
, which is ditilled from Stable Diffusion 2.1 with the reward feedback from HPSv2.1.
🏋️ Training commands
To perform RG-LCD with the HPSv2.1, we can run
accelerate launch main.py \
--output_dir=PATH_TO_LOG \
--gradient_checkpointing \
--use_8bit_adam \
--enable_xformers_memory_efficient_attention \
--resolution 768 \
--allow_tf32 \
--mixed_precision bf 16 \
--train_shards_path_or_url "pipe:curl -L -s https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset/resolve/main/data/{00000..01090}.tar?download=true" \
--optimize_reward_fn \
--direct_optim_expert_reward \
--reward_fn_name hpsv2 \
--reward_scale 1
📃 Citation
@article{
li2024reward,
title={Reward Guided Latent Consistency Distillation},
author={Jiachen Li and Weixi Feng and Wenhu Chen and William Yang Wang},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2024},
url={https://openreview.net/forum?id=z116TO4LDT},
note={Featured Certification}
}