Home

Awesome

FFLOM Source Code

1. Install Environment

2. Preprocess Dataset

We provide zinc250k dataset / casf dataset / PDBbind dataset in ./dataset fold. For example:

3. Training

We provide pretrained checkpoints in ./good_ckpt fold. To train your own model, use codes like:

4. Generation

5. Evaluation

If you want to evaluate the generated molecules, using codes for linker design like:

python evaluate.py --train_data dataset/linker/zinc_train.txt --gen_data ./mols/test.txt --linker_design

codes for R-group design:

python evaluate.py --train_data dataset/r_group/zinc_train.txt --gen_data ./mols/test.txt --r_design

6. Reconstruction

For recovery metrics, please check recon.py for linker case or recon_r.py for r-group case:

python recon.py --path ./data_preprocessed/zinc_test_linker/ --seed 66666666 --init_checkpoint ./good_ckpt/checkpoint306
python recon_r.py --path ./data_preprocessed/zinc_test_r/ --seed 66666666 --init_checkpoint ./good_ckpt/checkpoint335