Awesome
ECFVI : Error Compensation Framework for Flow-Guided Video Inpainting
This repository is for ECFVI introduced in the following paper
Jaeyeon Kang, Seoung Wug Oh, and Seon Joo Kim. "Error Compensation Framework for Flow-Guided Video Inpainting ", ECCV 2022. PDF
Dependencies
Python>=3.6.8, Pytorch=1.6.1, CUDA version>= 10.1
Quickstart (DEMO)
-
Clone this github repo
git clone https://github.com/JaeYeonKang/ECFVI cd ECFVI
-
Place your test dataset on ./test
frame_path = %DATA_DIR% + %DATA_NAME% + 'frames/'
ex) ./test/Youtube-VI/frames/video1/00000.png'mask_path = %DATA_DIR% + %DATA_NAME% + 'masks/'
-
Download our pretrained models from link. Then, place the weights in ./pretrained_weights
-
Run demo
CUDA_VISIBLE_DEVICES=0 python main.py --model network --trainer core.evaluation --version $SAVE_DIR$ \ --test_data_name $DATA_NAME$ --test_data_root $DATA_DIR$ --mask_mode $MASK_MODE$
- SAVE_DIR : path to save results
- DATA_NAME : name of test dataset
- DATA_DIR : path to test dataset
- MASK_MODE : for Youtube-VI dataset, mode:0 -> moving mask, mode:1 -> stationary mask
For example,
CUDA_VISIBLE_DEVICES=0 python main.py --model network --trainer core.evaluation --version DEMO \ --test_data_name Youtube-VI --test_data_root ./test --mask_mode 0 CUDA_VISIBLE_DEVICES=0 python main.py --model network --trainer core.evaluation --version DEMO \ --test_data_name DAVIS_shadow --test_data_root ./test --davis
Youtube Video Inpainting (Youtube-VI) dataset
You can download our Youtube-VI dataset from link
Citation
If you use any part of this code in your research, please cite our paper