Awesome
For training:
-
Clone this code by
git clone https://github.com/JXingZhao/ContrastPrior.git --recursive
, assume your source code directory is$ContrastPrior
; -
Download training data (rmhn), and extract it to
$ContrastPrior/data/
; -
Build caffe with
cd caffe && mkdir build && cd build && cmake .. && make -j32&& make pycaffe
; -
Download initial model and put it into
$ContrastPrior/Model/
; -
Start to train with
python run.py
.
For testing:
-
Download pretrained model
$ContrastPrior/Model/
; -
Generate saliency maps by
python test.py
; -
Run
$ContrastPrior/evaluation/main.m
to evaluate the saliency maps.
Pretrained models, datasets and results:
| Page | | Training Set (rmhn) | | All RGBD Datasets (xdvf) | | Evaluation results |
If you think this work is helpful, please cite
@inproceedings{zhao2019Contrast,
title={Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection},
author={Zhao, Jia-Xing and Cao, Yang and Fan, Deng-Ping and Cheng, Ming-Ming and Li, Xuan-Yi and Zhang, Le},
booktitle=CVPR,
year={2019}
}
@inproceedings{fan2017structure,
title={{Structure-measure: A New Way to Evaluate Foreground Maps}},
author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
booktitle={IEEE International Conference on Computer Vision (ICCV)},
pages = {4548-4557},
year={2017},
note={\url{http://dpfan.net/smeasure/}},
organization={IEEE}
}