Awesome
README
Data Preparation
- Use
pip install -r requirements.txt
to download required packages. - Download 3DPW dataset from https://virtualhumans.mpi-inf.mpg.de/3DPW/license.html, and put it under
data/3DPW/
folder. - Preprocess 3DPW data using
python scripts/preprocess_3DPW.py
- Download all the https://amass.is.tue.mpg.de/index.html, and extract them to
data/AMASS/
folder. - Preprocess AMASS data using
python scripts/preprocess_AMASS.py
- Download SMPL model and place it under
data/smplx_models/smpl/
If everything setups properly, the layout of data/
folder will be something like:
data
├── 3DPW
│ ├── imageFiles/
│ └── sequenceFiles/
├── AMASS
│ ├── ACCAD/
│ ├── BioMotionLab_NTroje/
│ ├── BMLhandball/
│ ├── BMLmovi/
│ ├── CMU/
│ ├── DanceDB/
│ ├── DFaust_67/
│ ├── EKUT/
│ ├── Eyes_Japan_Dataset/
│ ├── HUMAN4D/
│ ├── HumanEva/
│ ├── KIT/
│ ├── MPI_HDM05/
│ ├── MPI_Limits/
│ ├── MPI_mosh/
│ ├── SFU/
│ ├── SSM_synced/
│ ├── TCD_handMocap/
│ ├── TotalCapture/
│ └── Transitions_mocap/
├── 3DPW_test.npz
├── 3DPW_valid.npz
├── AMASS.npz
├── J_regressor_h36m.npy
└── smplx_models
└── smpl
├── SMPL_FEMALE.pkl
├── SMPL_MALE.pkl
└── SMPL_NEUTRAL.pkl
Training & Evaluation
# Evaluate with sample pretrained model
python eval.py
# (Optional) train from scratch
python train.py