Awesome
AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring (CVPR2024)
Xintian Mao, Qingli Li and Yan Wang
Quick Run
Training
- Download GoPro training and testing data
- To train the main body of AdaRevD, download the pretrained model from NAFNet or UFPNet 百度网盘(提取码: xpjh), modify state_dict_pth_encoder in GoPro-AdaRevIDB-pretrain-4gpu.yml and run
cd AdaRevD
./train_4gpu.sh Motion_Deblurring/Options/GoPro-AdaRevIDB-pretrain-4gpu.yml
- To train the classifier of AdaRevD, modify the pretrain_network_g in GoPro-AdaRevIDB-classify-4gpu.yml and run
./train_4gpu.sh Motion_Deblurring/Options/GoPro-AdaRevIDB-classify-4gpu.yml
Evaluation
To test the pre-trained models Google Drive or 百度网盘(提取码:dfce) on your own images (turn the 'pretrain' in yml from false to true for RevD), run
python Motion_Deblurring/val.py
Results
Results on GoPro, HIDE, Realblur test sets: Google Drive or 百度网盘(提取码:27ex)
Citation
If you use , please consider citing:
@inproceedings{xintm2024AdaRevD,
title = {AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring},
author = {Xintian Mao, Qingli Li and Yan Wang},
booktitle = {Proc. CVPR},
year = {2024}
}
Contact
If you have any question, please contact mxt_invoker1997@163.com
Our Related Works
- Deep Residual Fourier Transformation for Single Image Deblurring, arXiv 2021. Paper | Code
- Intriguing Findings of Frequency Selection for Image Deblurring, AAAI 2023. Paper | Code
- LoFormer: Local Frequency Transformer for Image Deblurring, ACM MM 2024. Paper | Code
Reference Code:
- https://github.com/Fangzhenxuan/UFPDeblur
- https://github.com/megvii-research/NAFNet
- https://github.com/megvii-research/RevCol
- https://github.com/littlepure2333/APE
- https://github.com/INVOKERer/DeepRFT/tree/AAAI2023
Acknowledgment: This code is based on the BasicSR toolbox.