Home

Awesome

Compressed networks from ENC (Caffe model)

Fine-tuned network models by "Efficient Neural Network Compression", CVPR 2019.

For the source-code of paper, please refer to [ENC]

AlexNet with ImageNet

MethodFLOPsWeightsTop-1 Acc.Top-5 Acc.
[ENC-Inf]37.5%18.0%56.74%80.14%
[ENC-Model]37.5%18.0%56.71%80.13%
MethodFLOPsTop-1 Acc.Top-5 Acc.
[ENC-Inf]31%56.66%79.74%
MethodFLOPsTop-1 Acc.Top-5 Acc.
[ENC-Inf]31%56.66%79.74%
[ENC-Inf]50%57.33%80.33%
[ENC-Inf]75%57.67%80.50%
[ENC-Inf]95%57.74%80.57%
MethodFLOPsWeightsTop-1 Acc.Top-5 Acc.
[ENC-Model]23%18%54.48%78.58%
[ENC-Model]25%18%55.08%78.99%
[ENC-Model]30%18%56.12%79.59%

VGG-16 with ImageNet

MethodFLOPsTop-1 Acc.Top-5 Acc.
[ENC-Inf]25%71.29%90.12%
[ENC-Model]25%71.25%90.12%
[ENC-Map]25%70.90%89.97%
MethodFLOPsTop-1 Acc.Top-5 Acc.
[ENC-Model]20%71.06%89.95%
MethodFLOPsTop-1 Acc.Top-5 Acc.
[ENC-Model]24%70.95%89.95%

ResNet-56 with Cifar10

MethodFLOPsTop-1 Acc. w/o FTTop-1 Acc. w/ FT
[ENC-Inf]50%90.22%93.0%
[ENC-Model]50%89.55%93.0%
[ENC-Map]50%89.80%93.0%
MethodFLOPsTop-1 Acc.
[ENC-Map]55%93.2%

Citation

@CONFERENCE{ENC_CVPR19,
  author={Hyeji Kim, Muhammad Umar Karim Khan, Chong-Min Kyung},
  title={Efficient Neural Network Compression},
  booktitle={CVPR},
  month = {June},
  year = {2019},
}