Awesome
MLKP
CVPR18 Paper: Multi-scale Location-aware Kernel Representation for Object Detection. Paper can be found in arXiv and CVPR2018.
MLKP is a novel compact, location-aware kernel approximation method to represent object proposals for effective object detection. Our method is among the first which exploits high-order statistics in improving performance of object detection. The significant improvement over the first-order statistics based counterparts demonstrates the effectiveness of the proposed MLKP.
Citing
If you find MLKP useful in your research, please consider citing:
@InProceedings{Wang_2018_CVPR,
author = {Wang, Hao and Wang, Qilong and Gao, Mingqi and Li, Peihua and Zuo, Wangmeng},
title = {Multi-Scale Location-Aware Kernel Representation for Object Detection},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}
@article{wang2021multi,
title={Multi-scale structural kernel representation for object detection},
author={Wang, Hao and Wang, Qilong and Li, Peihua and Zuo, Wangmeng},
journal={Pattern Recognition},
volume={110},
pages={107593},
year={2021},
publisher={Elsevier}
}
The code is modified from py-faster-rcnn.
For multi-gpu training, please refer to py-R-FCN-multiGPU
Machine configurations
- OS: Linux 14.02
- GPU: TiTan 1080 Ti
- CUDA: version 8.0
- CUDNN: version 5.0
Slight changes may not results instabilities
PASCAL VOC detection results
We have re-trained our networks and the results are refreshed as belows:
VOC07_Test set results
Networks | mAP | aero | bike | bird | boat | bottle | bus | car | cat | chair | cow | table | dog | horse | mbike | person | plant | sheep | sofa | train | tv |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG16 | 78.4 | 80.4 | 83.0 | 77.6 | 70.0 | 71.8 | 84.2 | 87.5 | 86.7 | 67.0 | 83.1 | 70.3 | 84.9 | 85.5 | 81.9 | 79.2 | 52.6 | 79.7 | 79.6 | 81.7 | 81.4 |
ResNet | 81.0 | 80.3 | 87.1 | 80.8 | 73.5 | 71.6 | 86.0 | 88.4 | 88.8 | 66.9 | 86.2 | 72.8 | 88.7 | 87.4 | 86.7 | 84.3 | 56.7 | 84.9 | 81.0 | 86.7 | 81.7 |
VOC12_Test set results
Networks | mAP | aero | bike | bird | boat | bottle | bus | car | cat | chair | cow | table | dog | horse | mbike | person | plant | sheep | sofa | train | tv |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG16 | 75.5 | 86.4 | 83.4 | 78.2 | 60.5 | 57.9 | 80.6 | 79.5 | 91.2 | 56.4 | 81.0 | 58.6 | 91.3 | 84.4 | 84.3 | 83.5 | 56.5 | 77.8 | 67.5 | 83.9 | 67.4 |
ResNet | 78.0 | 87.2 | 85.6 | 79.7 | 67.3 | 63.3 | 81.2 | 82.0 | 92.9 | 60.2 | 82.1 | 61.0 | 91.2 | 84.7 | 86.6 | 85.5 | 60.6 | 80.8 | 69.5 | 85.8 | 72.4 |
Results can be found at VGG16 and ResNet
MS COCO detection results
Networks | Avg.Precision,IOU: | Avg.Precision,Area: | Avg.Recal,#Det: | Avg.Recal,Area: |
---|---|---|---|---|
0.5:0.95 0.50 0.75 | Small Med. Large | 1 10 100 | Small Med. Large | |
VGG16 | 26.9 48.4 26.9 | 8.6 29.2 41.1 | 25.6 37.9 38.9 | 16.0 44.1 59.0 |
ResNet | 30.0 51.3 31.0 | 9.6 32.4 47.2 | 27.8 40.7 41.7 | 16.4 46.8 65.1 |
MLKP Installation
-
Clone the MLKP repository
git clone https://github.com/Hwang64/MLKP.git
-
Build Caffe and pycaffe
cd $MLKP_ROOT git clone https://github.com/Hwang64/caffe-mlkp.git cd caffe-mlkp make clean make all -j16 && make pycaffe
-
Build the Cython modules
cd $MLKP_ROOT/lib make
-
installation for training and testing models on PASCAL VOC dataset
3.0 The PASCAL VOC dataset has the basic structure:
$VOCdevkit/ # development kit $VOCdevkit/VOCcode/ # VOC utility code $VOCdevkit/VOC2007 # image sets, annotations, etc.
3.1 Create symlinks for the PASCAL VOC dataset
cd $MLKP_ROOT/data ln -s $VOCdevkit VOCdevkit2007 ln -s $VOCdevkit VOCdevkit2012
For more details, please refer to py-faster-rcnn.
-
Test with PASCAL VOC dataset
We provide PASCAL VOC 2007 pretrained models based on VGG16 and ResNet, please download the models manully from BaiduYun or GoogleDrive and put them in
$MLKP_ROOT/output/
4.0 Test VOC07 using VGG16 network
python ./tools/test_net.py --gpu 0\ --def models/VGG16/test.prototxt\ --net output/VGG16_voc07_test.caffemodel\ --imdb voc_2007_test\ --cfg experiments/cfgs/faster_rcnn_end2end.yml
The final results of the model is mAP=78.4%
4.1 Test VOC07 using ResNet-101 network
python ./tools/test_net.py --gpu 0\ --def models/ResNet/test.prototxt\ --net output/ResNet_voc07_test.caffemodel\ --imdb voc_2007_test\ --cfg experiments/cfgs/faster_rcnn_end2end.yml
The final results of the model is mAP=81.0%
-
Train with PASCAL VOC dataset
Please download ImageNet-pretrained models first and put them into
$data/ImageNet_models
.5.0 Train using single GPU
python ./tools/train_net.py --gpu 0\ --solver models/VGG16/solver.prototxt\ --weights data/ImageNet_models/VGG16.v2.caffemodel\ --imdb voc_2007_trainval+voc_2012_trainval\ --cfg experiments/cfgs/faster_rcnn_end2end.yml
5.1 Train using multi-GPUs
python ./tools/train_net_multi_gpu.py --gpu 0,1,2,3\ --solver models/VGG16/solver.prototxt\ --weights data/ImageNet_models/VGG16.v2.caffemodel\ --imdb voc_2007_trainval+voc_2012_trainval\ --cfg experiments/cfgs/faster_rcnn_end2end.yml