Awesome
MPLT for RGB-T Tracking
Implementation of the paper “RGB-T Tracking via Multi-Modal Mutual Prompt Learning”
Environment Installation
conda create -n mplt python=3.8
conda activate mplt
bash install.sh
Project Paths Setup
Run the following command to set paths for this project
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
After running this command, you can also modify paths by editing these two files
lib/train/admin/local.py # paths about training
lib/test/evaluation/local.py # paths about testing
Data Preparation
Put the tracking datasets in ./data
. It should look like:
${PROJECT_ROOT}
-- data
-- lasher
|-- trainingset
|-- testingset
|-- trainingsetList.txt
|-- testingsetList.txt
...
Training
Download SOT pretrained weights and put them under $PROJECT_ROOT$/pretrained_models
.
python tracking/train.py --script mplt_track --config vitb_256_mplt_32x1_1e4_lasher_15ep_sot --save_dir ./output/vitb_256_mplt_32x1_1e4_lasher_15ep_sot --mode multiple --nproc_per_node 4
Replace --config
with the desired model config under experiments/mplt_track
.
Evaluation
Put the checkpoint into $PROJECT_ROOT$/output/config_name/...
or modify the checkpoint path in testing code.
python tracking/test.py mplt_track vitb_256_mplt_32x1_1e4_lasher_15ep_sot --dataset_name lasher_test --threads 6 --num_gpus 1
python tracking/analysis_results.py --tracker_name mplt_track --tracker_param vitb_256_mplt_32x1_1e4_lasher_15ep_sot --dataset_name lasher_test
Results on LasHeR testing set
Model | Backbone | Pretraining | Precision | Success | FPS | Checkpoint | Raw Result
-MPLT-|-ViT-Base-|-----SOT-----|----72.0----|---57.1---|--22.8--| download | download
Acknowledgments
Our project is developed upon OSTrack. Thanks for their contributions which help us to quickly implement our ideas.
Citation
If our work is useful for your research, please consider cite.