Home

Awesome

MPLT for RGB-T Tracking

Implementation of the paper “RGB-T Tracking via Multi-Modal Mutual Prompt Learning

Environment Installation

conda create -n mplt python=3.8
conda activate mplt
bash install.sh

Project Paths Setup

Run the following command to set paths for this project

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output

After running this command, you can also modify paths by editing these two files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Data Preparation

Put the tracking datasets in ./data. It should look like:

${PROJECT_ROOT}
  -- data
      -- lasher
          |-- trainingset
          |-- testingset
          |-- trainingsetList.txt
          |-- testingsetList.txt
          ...

Training

Download SOT pretrained weights and put them under $PROJECT_ROOT$/pretrained_models.

python tracking/train.py --script mplt_track --config vitb_256_mplt_32x1_1e4_lasher_15ep_sot --save_dir ./output/vitb_256_mplt_32x1_1e4_lasher_15ep_sot --mode multiple --nproc_per_node 4

Replace --config with the desired model config under experiments/mplt_track.

Evaluation

Put the checkpoint into $PROJECT_ROOT$/output/config_name/... or modify the checkpoint path in testing code.

python tracking/test.py mplt_track vitb_256_mplt_32x1_1e4_lasher_15ep_sot --dataset_name lasher_test --threads 6 --num_gpus 1

python tracking/analysis_results.py --tracker_name mplt_track --tracker_param vitb_256_mplt_32x1_1e4_lasher_15ep_sot --dataset_name lasher_test

Results on LasHeR testing set

Model | Backbone | Pretraining | Precision | Success | FPS | Checkpoint | Raw Result

-MPLT-|-ViT-Base-|-----SOT-----|----72.0----|---57.1---|--22.8--| download | download

Acknowledgments

Our project is developed upon OSTrack. Thanks for their contributions which help us to quickly implement our ideas.

Citation

If our work is useful for your research, please consider cite.