Home

Awesome

<center>Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation</center>

This repository provides the official implementation for "Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation". (ECCV 2022)

Paper

ProCA

Getting Started

Installation

git clone https://github.com/SCUT-AILab/ProCA.git
cd ProCA
pip install -r requirements.txt

Data Preparation

Source Pre-trained

from Art to Clipart on Office-Home-CI:

python OH_source_Train.py --gpu 0 --source 0

from Caltech256 to ImageNet84:

python cal256_source_Train.py --gpu 0

Adapt to the Target Domain

from Art to Clipart on Office-Home-CI:

python OH_adapt_2_target.py --gpu 0 --source 0 --target 1 --source_model ./model_source/20220715-1518-OH_Art_ce_singe_gpu_resnet50_best.pkl

from Caltech256 to ImageNet84:

python IC_from_c_2_i.py --gpu 0 --source_model ./model_source/20220714-1949-single_gpu_cal256_ce_resnet50_best.pkl

Results

Final accuracies (%) on the Office-Home-CI dataset (ResNet-50). experiments_OH

Final accuracies (%) on the Office-31-CI and ImageNet-Caltech dataset (ResNet-50). experiments_OH

Citation

If you find our work useful in your research, please cite the following paper:

@inproceedings{Lin2022ProCA,
  title={Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation},
  author={Hongbin Lin and Yifan Zhang and Zhen Qiu and Shuaicheng Niu and Chuang Gan and Yanxia Liu and Mingkui Tan},
  booktitle={European Conference on Computer Vision},
  year={2022}
}

Contact

For any question, please file an issue or contact

Hongbin Lin: sehongbinlin@mail.scut.edu.cn
Zhen Qiu: seqiuzhen@mail.scut.edu.cn