Home

Awesome

Bayesian-Neural-Network-Pytorch

<p> <a href="https://github.com/Harry24k/adversarial-attacks-pytorch/blob/master/LICENSE"><img alt="MIT License" src="https://img.shields.io/github/license/Harry24k/bayesian-neural-network-pytorch" /></a> <a href="https://img.shields.io/pypi/v/torchbnn"><img alt="Pypi" src="https://img.shields.io/pypi/v/torchbnn.svg" /></a> <a href="https://bayesian-neural-network-pytorch.readthedocs.io/en/latest/"><img alt="Documentation Status" src="https://readthedocs.org/projects/bayesian-neural-network-pytorch/badge/?version=latest" /></a> </p>

This is a lightweight repository of bayesian neural network for PyTorch.

Usage

:clipboard: Dependencies

:hammer: Installation

import torchbnn

:rocket: Demos

Citation

If you use this package, please cite the following BibTex (SemanticScholar, GoogleScholar):

@article{lee2022graddiv,
  title={Graddiv: Adversarial robustness of randomized neural networks via gradient diversity regularization},
  author={Lee, Sungyoon and Kim, Hoki and Lee, Jaewook},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2022},
  publisher={IEEE}
}

:mag_right: Update Records

Here is update records of this package.

Thanks to