Home

Awesome

Perceptual IQA Dataset (PIPAL) and Codebase

PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration

<a href="https://www.jasongt.com" target="_blank">Jinjin Gu</a>, <a href="http://www.haomingcai.com" target="_blank">Haoming Cai</a>, <a href="https://chenhaoyu.com" target="_blank">Haoyu Chen</a>, <a href="https://www.linkedin.com/in/yexiaoxing/" target="_blank">Haoyu Chen</a>, <a href="http://www.jimmyren.com" target="_blank">Jimmy S.Ren</a>, <a href="http://xpixel.group/2010/01/20/chaodong.html" target="_blank">Chao Dong</a>. In ECCV, 2020.

🔥 Important Notes [ 2022-Jan-02 ]

<!-- ## 🧭 Navigation - [ECCV 2020 Paper](https://arxiv.org/abs/2007.12142) | [Project Web](https://www.jasongt.com/projectpages/pipal.html) | [NTIRE 2021 Challenge](https://competitions.codalab.org/competitions/28050). - If you have any questions, please contact with haomingcai@link.cuhk.edu.cn -->

📦 Download PIPAL NTIRE 2021

<p align="center"> <img src="figures/comparison.png" > </p>

🔧 Dependencies and Installation

💻 How to Train

📈 How to Test

Ackowledgement