Home

Awesome

HiPAL

Code for KDD'22 Paper -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

<img width="1491" alt="image" src="https://user-images.githubusercontent.com/12636809/153683643-512be547-c8aa-44f7-bf3c-687d58cffa5b.png">

Setup

pip install requirements.txt

To Run

Parse activities from EHR log files:

python log_parsing.py

Run HiPAL and its variants:

bash bash/run_hitcn_cv.sh

Run single-level models (FCN, CausalNet, ResTCN):

bash bash/run_single_level.sh

Run hierarchial RNNs (H-RNN, HiGRU):

bash bash/run_higru_cv.sh

Interpretable Burnout Prediction

<img width="1394" alt="image" src="https://user-images.githubusercontent.com/12636809/161803105-4b09591c-6cde-4428-b38e-553c95997e9b.png">

Citation

Please consider citing our work if you find this repository useful!

@article{liu2022hipal,
  title={HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records},
  author={Liu, Hanyang and Lou, Sunny S and Warner, Benjamin C and Harford, Derek R and Kannampallil, Thomas and Lu, Chenyang},
  journal={ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
  year={2022}
}