Awesome
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks" by Hanxun Huang, Yisen Wang, Sarah Monazam Erfani, Quanquan Gu, James Bailey, Xingjun Ma
Robust Configurations for WideResNet (WRN-34-R)
- Model defined in models/RobustWideResNet.py
def RobustWideResNet34(num_classes=10):
# WRN-34-R configurations
return RobustWideResNet(
num_classes=num_classes, channel_configs=[16, 320, 640, 512],
depth_configs=[5, 5, 5], stride_config=[1, 2, 2], stem_stride=1,
drop_rate_config=[0.0, 0.0, 0.0], zero_init_residual=False,
block_types=['basic_block', 'basic_block', 'basic_block'],
activations=['ReLU', 'ReLU', 'ReLU'], is_imagenet=False,
use_init=True)
Reproduce results from the paper
- Pretrained Weights for WRN-34-R used in Table 2 available on Google Drive
- All hyperparameters/settings for each model/method used in Table 2 are stored in configs/*.yaml files.
Evaluations of the robustness of WRN-34-R
WRN-34-R trained with TRADES
Replace PGD with other attacks ['CW', 'GAMA', 'AA'].
python main.py --config_path configs/config-WRN-34-R
--exp_name /path/to/experiments/folders
--version WRN-34-R-trades
--load_best_model --attack PGD --data_parallel
WRN-34-R trained with TRADES and additional 500k data
Replace PGD with other attacks ['CW', 'GAMA', 'AA'].
python main.py --config_path configs/config-WRN-34-R
--exp_name /path/to/experiments/folders
--version WRN-34-R-trades-500k
--load_best_model --attack PGD --data_parallel
Train WRN-34-R with 500k additional data from scratch
python main.py --config_path configs/config-WRN-34-R
--exp_name /path/to/experiments/folders
--version WRN-34-R-trades-500k
--train --data_parallel
CIFAR-10 - Linf AutoAttack Leaderboard using additional 500k data
- Note: This is not maintained, please find up-to-date leaderboard is available in RobustBench.
# | paper | model | architecture | clean | report. | AA |
---|---|---|---|---|---|---|
1 | (Gowal et al., 2020)‡ | available | WRN-70-16 | 91.10 | 65.87 | 65.88 |
2 | Ours‡ + EMA | available | WRN-34-R | 91.23 | 62.54 | 62.54 |
3 | Ours‡ | available | WRN-34-R | 90.56 | 61.56 | 61.56 |
4 | (Wu et al., 2020a)‡ | available | WRN-34-15 | 87.67 | 60.65 | 60.65 |
5 | (Wu et al., 2020b)‡ | available | WRN-28-10 | 88.25 | 60.04 | 60.04 |
6 | (Carmon et al., 2019)‡ | available | WRN-28-10 | 89.69 | 62.5 | 59.53 |
7 | (Sehwag et al., 2020)‡ | available | WRN-28-10 | 88.98 | - | 57.14 |
8 | (Wang et al., 2020)‡ | available | WRN-28-10 | 87.50 | 65.04 | 56.29 |
Citation
@inproceedings{huang2021exploring,
title={Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks},
author={Hanxun Huang and Yisen Wang and Sarah Monazam Erfani and Quanquan Gu and James Bailey and Xingjun Ma},
booktitle={NeurIPS},
year={2021}
}