Home

Awesome

AvatarFusion

Official implementation of ACM Multimedia 2023 paper:

AvatarFusion: Zero-shot Generation of Clothing-Decoupled 3D Avatars Using 2D Diffusion (<a href="https://hansenhuang0823.github.io/AvatarFusion/"> project page </a>)

To-Do List:

Download Supporting Models:

  1. smpl_models/smpl/SMPL_NEUTRAL.pkl: <a href="https://smpl.is.tue.mpg.de/"> https://smpl.is.tue.mpg.de/ </a> (Note: please download version 1.0)
  2. new_data/gradients_grid_stand.npy, sdf_grid_stand.npy, vertices_stand.npy, bound.npz: <a href="https://drive.google.com/drive/folders/1V1GNMPvbkX6NLC9rcuYjARPtcLjE6-k9?usp=sharing">Google Drive </a>
  3. stand_pose.npy: <a href="https://drive.google.com/drive/folders/1V1GNMPvbkX6NLC9rcuYjARPtcLjE6-k9?usp=sharing">Google Drive </a>

Training

We offer three PSDS schedules, with the default schedule being the most stable one. Since the level of understanding of Stable Diffusion varies among individual characters, if clothing decoupling cannot be achieved, you can switch the schedules by adding "--schedule 1 (or 2)" or modifying the text prompts in the configurations.

python avatarfusion.py --mode train_diffusion --conf confs/TomCruise_opensource.conf

Low VRAM users can reduce resolution ("max_ray_num") in line 66, avatarfusion.py.

Acknowledgement

This repository is build upon an increasing list of amazing research works and open-source projects, thanks a lot to all the authors for sharing!