Home

Awesome

SSM-VLN

Code and Data for our CVPR 2021 paper "Structured Scene Memory for Vision-Language Navigation".

Environment Installation

Download Room-to-Room navigation data:

bash ./tasks/R2R/data/download.sh

Download image features for environments:

mkdir img_features
wget https://www.dropbox.com/s/o57kxh2mn5rkx4o/ResNet-152-imagenet.zip -P img_features/
cd img_features
unzip ResNet-152-imagenet.zip

Python requirements: Need python3.6.

conda create -n ssm python=3.6
conda activate ssm
pip install -r python_requirements.txt

Install Matterport3D simulators:

git submodule update --init --recursive 
sudo apt-get install libjsoncpp-dev libepoxy-dev libglm-dev libosmesa6 libosmesa6-dev libglew-dev
mkdir build && cd build
cmake -DEGL_RENDERING=ON ..
make -j8

Usage

Agent Training

cd ssm
python train.py

Agent Evaluation

Run the following scripts to evaluate the checkpoints.

cd ssm
python eval_agent.py

The trained model for R2R task is available in GoogleDrive. Please download the checkpoint file under snap/SSM/state_dict path and run the following script to evaluate the model.

cd ssm
python model_eval.py

Citation

Please cite this paper in your publications if it helps your research:

@inproceedings{wang2021structured,
      title={Structured Scene Memory for Vision-Language Navigation}, 
      author={Hanqing Wang and Wenguan Wang and Wei Liang and Caiming Xiong and Jianbing Shen},
      booktitle=CVPR,
      year={2021}
}
<!-- ## TODO's 1. [x] Release the checkpoint. 2. [x] Update the installation requirements. 3. [x] Add evaluation scripts. -->

Contact Information