Awesome
CoT
Code for the paper Hierarchical Visual Primitive Experts for Compositional Zero-Shot Learning, ICCV 2023.
Hanjae Kim, Jiyoung Lee, Seongheon Park, Kwanghoon Sohn
Installation
- Please create conda environment and install dependencies following the below steps.
conda env create --file environment.yml
conda activate cot
- Download C-GQA and VAW-CZSL dataset.
- Download Glove word embedding.
- Unzip all downloaded files and place it to the dataset folder following the below structures:
dataset
└─cgqa
│ └─compositional-split-natural
│ └─images
└─vaw-czsl
│ └─...
└─glove
└─glove.6B.300d.txt
└─glove_vocab.txt
Training & Testing
- Update dataset directory in config/*.yml files.
- To run training code, type
python train.py --cfg config/vaw-czsl.yml
- For testing, type
python test.py --cfg config/vaw-czsl.yml --load vaw-czsl.pth
Acknowledgement
Our code is based on the following excellent projects;
Citation
@inproceedings{kim2023hierarchical,
title={Hierarchical Visual Primitive Experts for Compositional Zero-Shot Learning},
author={Kim, Hanjae and Lee, Jiyoung and Park, Seongheon and Sohn, Kwanghoon},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={5675--5685},
year={2023}
}