Awesome
TPCV
code for CVPR23 Paper Learning optical expansion from scale matching
Requirements
The code has been tested with PyTorch 1.11.0 and Cuda 11.3.
conda create -n tpcv python=3.9
conda activate tpcv
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
Compile CUDA code for inverse optical flow
cd inverse_cuda
python setup.py install
Also need to install via pip
pip install matplotlib
pip install opencv-python
...
Dataset Configuration
To evaluate/train TPCV, you will need to download the required datasets.
We recommend manually specifying the path in dataset_exp_orin.py
, like def __init__(self, aug_params=None, split='kitti_test', root='/new_data/datasets/KITTI/training',get_depth=0):
, because the automatic one often makes mistakes
You can create symbolic links to wherever the datasets were downloaded in the datasets
folder
├── datasets
├── Sintel
├── test
├── training
├── KITTI
├── testing
├── training
├── devkit
├── FlyingChairs_release
├── data
├── FlyingThings3D
├── frames_cleanpass
├── frames_finalpass
├── optical_flow
Pretrained weights on KITTI
https://drive.google.com/drive/folders/1Ddh1HYKVo5CVITmLfV9_8uJKMI3HdePd?usp=share_link
Train on KITTI
python train.py --name raft-kitti_3D --stage kitti --validation kitti --restore_ckpt ../TPCV/checkpotins/kitti_3D_flow.pth --gpus 0 --num_steps 60000 --batch_size 2 --lr 0.000125 --image_size 320 960 --wdecay 0.0001 --gamma=0.85
Test on KITTI
python dc_flow_eval.py --model=../TPCV/checkpotins/kitti_3D_flow.pth --mixed_precision --start=0