Home

Awesome

Squint: A peephole optimizer for stack VM compilers

Introduction

Short summary: This repo contains a highly functional, but not quite complete, C compiler (mc.c) that supports JIT execution, ELF executable generation, and peephole optimization. mc.c is a follow on to the AMaCC compiler. See the AMaCC documentation referenced below for more information.

This compiler was developed on a Raspberry Pi computer running 32 bit Buster Linux. See the "Discussion" tab above for instructions on using this compiler with an ARM Chromebook.

The MC C compiler found in this repository is a subset of the full MC HPC compiler which is being developed offline. That said, results from the full MC HPC compiler are shown below.

This compiler supports the following features beyond AMaCC:

Source code size (public code version, this repository):

The original AMaCC compiler is based on the phenomenal work of the team at https://github.com/jserv/amacc , and I strongly suggest you visit that site to see the history of AMaCC compiler development as stored in that repository. It shows how small changes can be added to a base complier, step-by-step, to create a truly marvelous educational compiler. The README there expands upon this README and is where you will learn the most about the AMaCC compiler that was used as a starting point for this work.

Example

The following time command uses the mc compiler to JIT compile an optimized verison of the mc compiler, using an external optimizer linked as a shared object library, and then that optimized JIT complier is used to JIT compile an optimized version of Sieve of Eratosthenes (again using a shared object optimizer), and then the sieve benchmark is JIT executed. The time shown is the time it takes to do everything in this paragraph, sieving 8388608 values using three different algorithms applied to bit arrays.

$ make mc-so      # use gcc to build an enhanced version of the mc compiler
  CC+LD		mc-so
$ time ./mc-so -DSQUINT_SO -Op mc.c -Op tests/sieve.c

real	0m1.031s
user	0m0.999s
sys	0m0.031s

Performance

BenchmarkMc runtimeMc+SquintGccGcc -O1Gcc -03
sieve (int)3.676s0.936s1.642s0.942s0.962s
shock (float)39.192s3.047s9.666s4.383s3.702s
nbody_arr (float)40.43s3.295s13.04s4.019s3.894s

Note: shock run with 8192 elements, 4096 timesteps, no output. Best of 20 runs.

BenchmarkMc compile timeMc+Squint timeGcc -O3 time
mc.c0.140s0.919s6.71s
BenchmarkMc .text sizeMc+Squint .textGcc -O3 .textNotes
bezier.c33761020768recursive
duff.c2972520412unusual
maze.c656824881752misc
shock.c784421123388floating point
mc.c1832488556859124full compiler

Assembly language quality

Below is a comparison of assembly language quality of three compilers on the Raspberry Pi 4B when compiling tests/shock.c.

For floating point, my HPC compiler is currently always faster than gcc with the above compiler options, by a minimum of 3%.

That said, make no mistake, my current optimizations are all crap** and yet I am still beating gcc. I am only one person with no resources, so I pick the path I see as most interesting and plod along at a snail's pace when I am not watching TV, playing video games, or reading/commenting on news articles.

If I had the resources to hire a small team and treat this as a real full time project, I could do much better! If you might be interested, let's talk.

** No common subexpression elimination, register renaming to reduce stalls, code motion to reduce stalls, or register coloring to reduce register pressure, etc. None of these things are hard to do, but all consume time to implement.

Below is a C function followed by the assembly language listing for the loop body, for all three compilers. The MC compiler creates only 3.05 assembly language instructions to represent each (complex) line of high level C code, on average:

void ComputeFaceInfo(int numFace, float *mass, float *momentum, float *energy,
                                  float *f0, float *f1, float *f2)
{
   int i;
   int contributor;
   float ev;
   float cLocal;

   for (i = 0; i < numFace; ++i)
   {
      /* each face has an upwind and downwind element. */
      int upWind   = i;     /* upwind element */
      int downWind = i + 1; /* downwind element */

      /* calculate face centered quantities */
      float massf =     0.5 * (mass[upWind]     + mass[downWind]);
      float momentumf = 0.5 * (momentum[upWind] + momentum[downWind]);
      float energyf =   0.5 * (energy[upWind]   + energy[downWind]);
      float pressuref = (gammaa - 1.0) *
                         (energyf - 0.5*momentumf*momentumf/massf);
      float c = sqrtf(gammaa*pressuref/massf);
      float v = momentumf/massf;

      /* Now that we have the wave speeds, we might want to */
      /* look for the max wave speed here, and update dt */
      /* appropriately right before leaving this function. */
      /* ... */

      /* OK, calculate face quantities */

      contributor = ((v >= 0.0) ? upWind : downWind);
      massf = mass[contributor];
      momentumf = momentum[contributor];
      energyf = energy[contributor];
      pressuref = energyf - 0.5*momentumf*momentumf/massf;
      ev = v*(gammaa - 1.0);

      f0[i] = ev*massf;
      f1[i] = ev*momentumf;
      f2[i] = ev*(energyf - pressuref);

      contributor = ((v + c >= 0.0) ? upWind : downWind);
      massf = mass[contributor];
      momentumf = momentum[contributor];
      energyf = energy[contributor];
      pressuref = (gammaa - 1.0)*(energyf - 0.5*momentumf*momentumf/massf);
      ev = 0.5*(v + c);
      cLocal = sqrtf(gammaa*pressuref/massf);

      f0[i] += ev*massf;
      f1[i] += ev*(momentumf + massf*cLocal);
      f2[i] += ev*(energyf + pressuref + momentumf*cLocal);

      contributor = ((v - c >= 0.0) ? upWind : downWind);
      massf = mass[contributor];
      momentumf = momentum[contributor];
      energyf = energy[contributor];
      pressuref = (gammaa - 1.0)*(energyf - 0.5*momentumf*momentumf/massf);
      ev = 0.5*(v - c);
      cLocal = sqrtf(gammaa*pressuref/massf);

      f0[i] += ev*massf;
      f1[i] += ev*(momentumf - massf*cLocal);
      f2[i] += ev*(energyf + pressuref - momentumf*cLocal);
   }
}
gccSquint (this repo)MC (private repo HPC compiler)
186++ instructions119 instructions113 instructions
??? inststructions/iter119 instructions/iter113 instructions/iter
105e0: b 10770640: add r0, r5, r3, lsl #25f0: mov r0, #12
105e4: mov r0, r7644: vldr s1, [r0]5f4: mla r0, r3, r0, r4
105e8: mov lr, r9648: vldr s0, [r0, #4]5f8: vldr s1, [r0]
105ec: mov ip, r864c: vadd.f32 s0, s1, s05fc: vldr s0, [r0, #12]
105f0: vldr s22, [lr]650: vmul.f32 s10, s3, s0600: vadd.f32 s0, s1, s0
105f4: vcvt.f64.f32 d7, s21654: add r0, r6, r3, lsl #2604: vmul.f32 s9, s3, s0
105f8: vadd.f32 s24, s28, s21658: vldr s1, [r0]608: vldr s1, [r0, #4]
105fc: vldr s23, [ip]65c: vldr s0, [r0, #4]60c: vldr s0, [r0, #16]
10600: vldr s3, [r0]660: vadd.f32 s0, s1, s0610: vadd.f32 s0, s1, s0
10604: vcvt.f64.f32 d2, s22664: vmul.f32 s9, s3, s0614: vmul.f32 s8, s3, s0
10608: vmul.f64 d7, d7, d6668: add r0, r7, r3, lsl #2618: vldr s1, [r0, #8]
1060c: vcmpe.f32 s24, #0.066c: vldr s1, [r0]61c: vldr s0, [r0, #20]
10610: vcvt.f64.f32 d3, s23670: vldr s0, [r0, #4]620: vadd.f32 s0, s1, s0
10614: vcvt.f64.f32 d5, s3674: vadd.f32 s0, s1, s0624: vmul.f32 s11, s3, s0
10618: vmul.f64 d4, d2, d9678: vmul.f32 s12, s3, s0628: vsub.f32 s6, s2, s4
1061c: vcvt.f32.f64 s14, d767c: vsub.f32 s7, s2, s462c: vmul.f32 s1, s3, s8
10620: vmrs APSR_nzcv, fpscr680: vmul.f32 s1, s3, s9630: vmul.f32 s1, s1, s8
10624: vmul.f64 d4, d4, d2684: vmul.f32 s1, s1, s9634: vdiv.f32 s0, s1, s9
10628: vmul.f32 s23, s23, s14688: vdiv.f32 s0, s1, s10638: vsub.f32 s0, s11, s0
1062c: vmul.f32 s22, s22, s1468c: vsub.f32 s0, s12, s063c: vmul.f32 s12, s6, s0
10630: vdiv.f64 d2, d4, d3690: vmul.f32 s13, s7, s0640: vmul.f32 s1, s2, s12
10634: vstr s23, [r3]694: vmul.f32 s1, s2, s13644: vdiv.f32 s0, s1, s9
10638: vstr s22, [r2]698: vdiv.f32 s0, s1, s10648: vsqrt.f32 s15, s0
1063c: vsub.f64 d5, d5, d269c: vsqrt.f32 s16, s064c: vdiv.f32 s13, s8, s9
10640: vcvt.f32.f64 s10, d56a0: vdiv.f32 s14, s9, s10650: vcmpe.f32 s13, #0.0
10644: vsub.f32 s20, s3, s106a4: vcmpe.f32 s14, s5654: vmrs APSR_nzcv, fpscr
10648: vmul.f32 s20, s20, s146a8: vmrs APSR_nzcv, fpscr658: mov r0, r3
1064c: vstr s20, [r1]6ac: mov r0, r365c: bge 0x664
10650: blt 1081c6b0: bge 0x6b8660: add r0, r3, #1
10654: mov r0, r76b4: add r0, r3, #1664: mov r5, r0
10658: mov lr, r96b8: mov r4, r0668: mov r0, #12
1065c: mov ip, r86bc: add r0, r5, r4, lsl #266c: mla r0, r5, r0, r4
10660: vldr s29, [lr]6c0: vldr s10, [r0]670: vldr s9, [r0]
10664: vmul.f32 s24, s24, s176c4: add r0, r6, r4, lsl #2674: vldr s8, [r0, #4]
10668: vldr s27, [ip]6c8: vldr s9, [r0]678: vldr s11, [r0, #8]
1066c: vldr s26, [r0]6cc: add r0, r7, r4, lsl #267c: vmul.f32 s1, s3, s8
10670: vcvt.f64.f32 d5, s296d0: vldr s12, [r0]680: vmul.f32 s1, s1, s8
10674: vcvt.f64.f32 d3, s276d4: vmul.f32 s1, s3, s9684: vdiv.f32 s0, s1, s9
10678: vcvt.f64.f32 d7, s266d8: vmul.f32 s1, s1, s9688: vsub.f32 s12, s11, s0
1067c: vmul.f64 d4, d5, d96dc: vdiv.f32 s0, s1, s1068c: vsub.f32 s0, s2, s4
10680: vmul.f64 d5, d4, d56e0: vsub.f32 s13, s12, s0690: vmul.f32 s10, s13, s0
10684: vdiv.f64 d4, d5, d36e4: vsub.f32 s0, s2, s4694: vmul.f32 s16, s10, s9
10688: vsub.f64 d7, d7, d46e8: vmul.f32 s11, s14, s0698: vmul.f32 s17, s10, s8
1068c: vmul.f64 d7, d7, d66ec: vmul.f32 s17, s11, s1069c: vsub.f32 s0, s11, s12
10690: vcvt.f32.f64 s14, d76f0: vmul.f32 s18, s11, s96a0: vmul.f32 s18, s10, s0
10694: vmul.f32 s15, s14, s256f4: vsub.f32 s0, s12, s136a4: vadd.f32 s1, s13, s15
10698: vdiv.f32 s0, s15, s276f8: vmul.f32 s19, s11, s06a8: vcmpe.f32 s1, #0.0
1069c: vcmp.f32 s0, #0.06fc: vadd.f32 s1, s14, s166ac: vmrs APSR_nzcv, fpscr
106a0: vsqrt.f32 s15, s0700: vcmpe.f32 s1, s56b0: mov r0, r3
106a4: vmrs APSR_nzcv, fpscr704: vmrs APSR_nzcv, fpscr6b4: bge 0x6bc
106a8: bmi 10b48708: mov r0, r36b8: add r0, r3, #1
106ac: vadd.f32 s26, s26, s1470c: bge 0x7146bc: mov r5, r0
106b0: vmov.f32 s14, s29710: add r0, r3, #16c0: mov r0, #12
106b4: vsub.f32 s21, s21, s28714: mov r4, r06c4: mla r0, r5, r0, r4
106b8: vmla.f32 s23, s27, s24718: add r0, r5, r4, lsl #26c8: vldr s9, [r0]
106bc: vmla.f32 s14, s27, s1571c: vldr s10, [r0]6cc: vldr s8, [r0, #4]
106c0: vmla.f32 s26, s29, s15720: add r0, r6, r4, lsl #26d0: vldr s11, [r0, #8]
106c4: vcmpe.f32 s21, #0.0724: vldr s9, [r0]6d4: vsub.f32 s6, s2, s4
106c8: vmla.f32 s22, s14, s24728: add r0, r7, r4, lsl #26d8: vmul.f32 s1, s3, s8
106cc: vmla.f32 s20, s26, s2472c: vldr s12, [r0]6dc: vmul.f32 s1, s1, s8
106d0: vstr s23, [r3]730: vsub.f32 s7, s2, s46e0: vdiv.f32 s0, s1, s9
106d4: vmrs APSR_nzcv, fpscr734: vmul.f32 s1, s3, s96e4: vsub.f32 s0, s11, s0
106d8: vstr s22, [r2]738: vmul.f32 s1, s1, s96e8: vmul.f32 s12, s6, s0
106dc: vstr s20, [r1]73c: vdiv.f32 s0, s1, s106ec: vadd.f32 s0, s13, s15
106e0: bge 106f0740: vsub.f32 s0, s12, s06f0: vmul.f32 s10, s3, s0
106e4: mov r7, r6744: vmul.f32 s13, s7, s06f4: vmul.f32 s1, s2, s12
106e8: mov r9, r5748: vadd.f32 s0, s14, s166f8: vdiv.f32 s0, s1, s9
106ec: mov r8, r474c: vmul.f32 s11, s3, s06fc: vsqrt.f32 s14, s0
106f0: vldr s27, [r9]750: vmul.f32 s1, s2, s13700: vmla.f32 s16, s10, s9
106f4: vmul.f32 s21, s21, s17754: vdiv.f32 s0, s1, s10704: vmul.f32 s0, s9, s14
106f8: vldr s26, [r8]758: vsqrt.f32 s15, s0708: vadd.f32 s0, s8, s0
106fc: vldr s24, [r7]75c: vmla.f32 s17, s11, s1070c: vmla.f32 s17, s10, s0
10700: vcvt.f64.f32 d5, s27760: vmul.f32 s0, s10, s15710: vadd.f32 s5, s11, s12
10704: vcvt.f64.f32 d3, s26764: vadd.f32 s0, s9, s0714: vmla.f32 s5, s8, s14
10708: vcvt.f64.f32 d7, s24768: vmla.f32 s18, s11, s0718: vmla.f32 s18, s10, s5
1070c: vmul.f64 d4, d5, d976c: vadd.f32 s6, s12, s1371c: vsub.f32 s1, s13, s15
10710: vmul.f64 d5, d4, d5770: vmla.f32 s6, s9, s15720: vcmpe.f32 s1, #0.0
10714: vdiv.f64 d4, d5, d3774: vmla.f32 s19, s11, s6724: vmrs APSR_nzcv, fpscr
10718: vsub.f64 d7, d7, d4778: vsub.f32 s1, s14, s16728: mov r0, r3
1071c: vmul.f64 d7, d7, d677c: vcmpe.f32 s1, s572c: bge 0x734
10720: vcvt.f32.f64 s14, d7780: vmrs APSR_nzcv, fpscr730: add r0, r3, #1
10724: vmul.f32 s15, s14, s25784: mov r0, r3734: mov r5, r0
10728: vdiv.f32 s0, s15, s26788: bge 0x790738: mov r0, #12
1072c: vcmp.f32 s0, #0.078c: add r0, r3, #173c: mla r0, r5, r0, r4
10730: vsqrt.f32 s28, s0790: mov r4, r0740: vldr s9, [r0]
10734: vmrs APSR_nzcv, fpscr794: add r0, r5, r4, lsl #2744: vldr s8, [r0, #4]
10738: bmi 10b14798: vldr s10, [r0]748: vldr s11, [r0, #8]
1073c: vadd.f32 s24, s24, s1479c: add r0, r6, r4, lsl #274c: vsub.f32 s6, s2, s4
10740: vmov.f32 s15, s277a0: vldr s9, [r0]750: vmul.f32 s1, s3, s8
10744: ldr r0, [sp, #52] ; 0x347a4: add r0, r7, r4, lsl #2754: vmul.f32 s1, s1, s8
10748: vmla.f32 s23, s26, s217a8: vldr s12, [r0]758: vdiv.f32 s0, s1, s9
1074c: vmls.f32 s15, s26, s287ac: vsub.f32 s7, s2, s475c: vsub.f32 s0, s11, s0
10750: cmp r0, r47b0: vmul.f32 s1, s3, s9760: vmul.f32 s12, s6, s0
10754: vmls.f32 s24, s27, s287b4: vmul.f32 s1, s1, s9764: vsub.f32 s0, s13, s15
10758: vmla.f32 s22, s15, s217b8: vdiv.f32 s0, s1, s10768: vmul.f32 s10, s3, s0
1075c: vmla.f32 s20, s24, s217bc: vsub.f32 s0, s12, s076c: vmul.f32 s1, s2, s12
10760: vstmia r3!, {s23}7c0: vmul.f32 s13, s7, s0770: vdiv.f32 s0, s1, s9
10764: vstmia r2!, {s22}7c4: vsub.f32 s0, s14, s16774: vsqrt.f32 s14, s0
10768: vstmia r1!, {s20}7c8: vmul.f32 s11, s3, s0778: mov r0, #12
1076c: beq 1085c EXIT LOOP7cc: vmul.f32 s1, s2, s1377c: mla r0, r3, r0, r6
10770: mov r9, r57d0: vdiv.f32 s0, s1, s10780: vmla.f32 s16, s10, s9
10774: add r5, r5, #47d4: vsqrt.f32 s15, s0784: vstr s16, [r0]
10778: vldr s20, [r4]7d8: add r0, r8, r3, lsl #2788: vmul.f32 s0, s9, s14
1077c: mov r8, r47dc: vmla.f32 s17, s11, s1078c: vsub.f32 s0, s8, s0
10780: add r4, r4, #47e0: vstr s17, [r0]790: vmla.f32 s17, s10, s0
10784: vldr s15, [r5]7e4: add r0, r9, r3, lsl #2794: vstr s17, [r0, #4]
10788: mov r7, r67e8: vmul.f32 s0, s10, s15798: vadd.f32 s5, s11, s12
1078c: add r6, r6, #47ec: vsub.f32 s0, s9, s079c: vmls.f32 s5, s8, s14
10790: vldr s22, [r9]7f0: vmla.f32 s18, s11, s07a0: vmla.f32 s18, s10, s5
10794: vldr s11, [r4]7f4: vstr s18, [r0]7a4: vstr s18, [r0, #8]
10798: vldr s14, [r6, #-4]7f8: add r0, sl, r3, lsl #27a8: add r3, r3, #1
1079c: vadd.f32 s22, s22, s157fc: vadd.f32 s6, s12, s137ac: cmp r3, r7
107a0: vldr d6, [pc, #144]800: vmls.f32 s6, s9, s157b0: blt 0x5f0
107a4: vadd.f32 s20, s20, s11804: vmla.f32 s19, s11, s6
107a8: vldr s15, [r6]808: vstr s19, [r0]
107ac: vmul.f32 s22, s22, s1780c: add r3, r3, #1
107b0: vsub.f64 d6, d15, d6810: ldr r0, [fp, #32]
107b4: vmul.f32 s20, s20, s17814: cmp r3, r0
107b8: vadd.f32 s14, s14, s15818: blt 0x640
107bc: vcvt.f64.f32 d5, s22
107c0: vcvt.f64.f32 d3, s20
107c4: vmul.f32 s14, s14, s17
107c8: vmul.f64 d4, d5, d9
107cc: vcvt.f64.f32 d7, s14
107d0: vmul.f64 d4, d4, d5
107d4: vdiv.f64 d5, d4, d3
107d8: vsub.f64 d7, d7, d5
107dc: vmul.f64 d7, d7, d6
107e0: vcvt.f32.f64 s14, d7
107e4: vmul.f32 s14, s14, s25
107e8: vdiv.f32 s0, s14, s20
107ec: vcmp.f32 s0, #0.0
107f0: vsqrt.f32 s28, s0
107f4: vmrs APSR_nzcv, fpscr
107f8: bmi 10ae8
107fc: vdiv.f32 s21, s22, s20
10800: vcmpe.f32 s21, #0.0
10804: vmrs APSR_nzcv, fpscr
10808: bge 105e4
1080c: mov r0, r6
10810: mov lr, r5
10814: mov ip, r4
10818: b 105f0
1081c: mov r0, r6
10820: mov lr, r5
10824: mov ip, r4
10828: b 10660
10ae8: str r1, [sp, #84]
10aec: strd r2, [sp, #88]
10af0: bl 1043c sqrtf@plt
10af4: ldr r3, [pc, #-676]
10af8: vldr d7, [pc, #136]
10afc: ldr r1, [sp, #84]
10b00: vldr s25, [r3, #4]
10b04: ldrd r2, [sp, #88]
10b08: vcvt.f64.f32 d15, s25
10b0c: vsub.f64 d6, d15, d7
10b10: b 107fc
10b14: vstr s14, [sp, #84]
10b18: str r1, [sp, #88]
10b1c: strd r2, [sp, #92]
10b20: bl 1043c sqrtf@plt
10b24: ldr r3, [pc, #100]
10b28: vldr d7, [pc, #88]
10b2c: ldr r1, [sp, #88]
10b30: vldr s25, [r3, #4]
10b34: ldrd r2, [sp, #92]
10b38: vcvt.f64.f32 d15, s25
10b3c: vsub.f64 d6, d15, d7
10b40: vldr s14, [sp, #84]
10b44: b 1073c
10b48: vstr s14, [sp, #84]
10b4c: vstr s15, [sp, #88]
10b50: str r1, [sp, #92]
10b54: strd r2, [sp, #96]
10b58: bl 1043c sqrtf@plt
10b5c: ldr r3, [pc, #44]
10b60: vldr d7, [pc, #32]
10b64: ldr r1, [sp, #92]
10b68: vldr s25, [r3, #4]
10b6c: ldrd r2, [sp, #96]
10b70: vcvt.f64.f32 d15, s25
10b74: vsub.f64 d6, d15, d7
10b78: vldr s14, [sp, #84]
10b7c: vldr s15, [sp, #88]
10b80: b 106ac

By the end of 2030, I expect to have automatic vectorization and/or parallelization working in my HPC compiler. The HPC extensions/restrictions make it "natural" to manage parallel partitions, unlike the mess created by C standard semantics.

Prerequisites

Test environment:

The architecture support targets armv7hf with Linux ABI, verified on Raspberry Pi 2/3/4 with GNU/Linux.

Acknowledgements

AMaCC is based on the infrastructure of c4. Please see the AMaCC repository AMaCC to learn more about the AMaCC compiler.