Home

Awesome

PAML Personalizing Dialogue Agents via Meta-Learning

<img src="plot/pytorch-logo-dark.png" width="10%"> License: MIT

<img align="right" src="plot/HKUST.jpg" width="12%">

This is the PyTorch implementation of the paper: Personalizing Dialogue Agents via Meta-Learning. Zhaojiang Lin*, Andrea Madotto*, Chien-Sheng Wu, Pascale Fung ACL 2019 [PDF]

Zhaojiang Lin and Andrea Madotto contributed equally to this work.

This code has been written using PyTorch >= 0.4.1. If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:

<pre> @article{lin2019personalizing, title={Personalizing Dialogue Agents via Meta-Learning}, author={Lin, Zhaojiang and Madotto, Andrea and Wu, Chien-Sheng and Fung, Pascale}, journal={arXiv preprint arXiv:1905.10033}, year={2019} } </pre>

Abstract

Existing personalized dialogue models use human designed persona descriptions to improve dialogue consistency. Collecting such descriptions from existing dialogues is expensive and requires hand-crafted feature designs. In this paper, we propose to extend Model-Agnostic Meta-Learning (MAML) to personalized dialogue learning without using any persona descriptions. Our model learns to quickly adapt to new personas by leveraging only a few dialogue samples collected from the same user, which is fundamentally different from conditioning the response on the persona descriptions. Empirical results on Persona-chat dataset indicate that our solution outperforms non-meta-learning baselines using automatic evaluation metrics, and in terms of human-evaluated fluency and consistency.

Persona-agnostic meta-learning

<p align="center"> <img src="plot/Maml_figure.jpg" width="50%" /> </p> The difference between finetuning from a) joint training on all personas and b) meta-learning persona. The solid line represents the optimization path of the initial parameters and dashed line the fine-tuning path. Meta-learned initial parameters can faster adapt to a new persona.

Consistency improvement

<p align="center"> <img src="plot/inter.jpg" width="50%" /> </p>

Iteration of finetuning versus consistency. Consistency of PAML grows linearly with respect to the iteration.

<p align="center"> <img src="plot/kshot.jpg" width="50%" /> </p>

K-shot (10 iteration) results for different settings. Consistency of PAML grows linearly with respect to finetune dialogue number.

Dependency

Check the packages needed or simply run the command

❱❱❱ pip install -r requirements.txt

Pre-trained glove embedding: glove.6B.300d.txt inside folder /vectors/.

Trained NLI model discribed in paper 3.1: pytorch_model.bin inside folder /data/nli_model/.

Experiment

Training

Training PAML

❱❱❱ python MAML.py --cuda --model trs --batch_size 16 --use_sgd --lr 0.01 --meta_lr 0.0003 --meta_batch_size 16 --meta_optimizer adam --pretrain_emb --weight_sharing --emb_dim 300 --hidden_dim 300 --fix_dialnum_train --pointer_gen --save_path save/paml/

Training baseline without persona input

❱❱❱ python main.py --cuda --model trs --pretrain_emb --weight_sharing --label_smoothing --noam --emb_dim 300 --hidden_dim 300 --pointer_gen --save_path save/no_persona/ 

Training baseline with persona input

❱❱❱ python main.py --cuda --model trs --pretrain_emb --weight_sharing --label_smoothing --noam --emb_dim 300 --hidden_dim 300 --pointer_gen --persona --save_path save/persona/

After training, take the model with lowest PPL in validation set to finetune and test (replace ${model}).

Automatic metric

Finetune and Testing PAML

❱❱❱ python main_fine_tune.py --cuda --model trs --batch_size 16 --use_sgd --lr 0.01 --meta_lr 0.0003 --meta_batch_size 16 --meta_optimizer adam --pretrain_emb --weight_sharing --emb_dim 300 --hidden_dim 300 --pointer_gen --save_path save/paml/${model} --save_path_dataset save/paml/ --test

Finetune and Testing baseline without persona input

❱❱❱ python main_fine_tune.py --cuda --model trs --batch_size 16 --use_sgd --lr 0.01 --meta_lr 0.0003 --meta_batch_size 16 --meta_optimizer adam --pretrain_emb --weight_sharing --emb_dim 300 --hidden_dim 300 --pointer_gen --save_path save/no_persona/${model} --save_path_dataset save/no_persona/ --test

Finetune and Testing baseline with persona input

❱❱❱ python main_fine_tune.py --cuda --model trs --batch_size 16 --use_sgd --lr 0.01 --meta_lr 0.0003 --meta_batch_size 16 --meta_optimizer adam --pretrain_emb --weight_sharing --emb_dim 300 --hidden_dim 300 --pointer_gen --persona --save_path save/persona/${model} --save_path_dataset save/persona/ --test

Generation samples

To check generation of PAML:

❱❱❱ python generate_samples.py --cuda --model trs --batch_size 1 --use_sgd --lr 0.01 --meta_lr 0.0003 --meta_batch_size 16 --meta_optimizer adam --pretrain_emb --weight_sharing --emb_dim 300 --hidden_dim 300 --pointer_gen --save_path save/paml/${model} --save_path_dataset save/paml/ --test

To skip training and finetune, check generation here: paml_generation