Awesome
GraphEdit: Large Language Models for Graph Structure Learning
<img src='GraphEdit_article_cover.png' /><a href='https://github.com/HKUDS/GraphEdit'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2402.15183'><img src='https://img.shields.io/badge/arXiv-2402.15183-b31b1b'></a>
Code Structure
.
├── README.md
├── GNN
│ ├── GNNs
│ │ ├── GCN
│ │ │ └── model.py
│ │ ├── MLP
│ │ │ └── model.py
│ │ ├── RevGAT
│ │ │ ├── eff_gcn_modules/rev
│ │ │ │ ├── __init__.py
│ │ │ │ ├── gcn_revop.py
│ │ │ │ ├── memgcn.py
│ │ │ │ └── rev_layer.py
│ │ │ ├── __init__.py
│ │ │ └── model.py
│ │ ├── SAGE
│ │ │ └── model.py
│ │ ├── gnn_trainer.py
│ │ └── gnn_utils.py
│ ├── datasets
│ │ ├── dataset.py
│ │ ├── load.py
│ │ ├── load_citeseer.py
│ │ ├── load_cora.py
│ │ ├── load_pubmed.py
│ │ └── utils.py
│ ├── main.py
│ ├── predict_edge.py
│ ├── train_edge_predictor.py
│ └── utils.py
└── LLM
├── graphedit
│ ├── data
│ │ ├──__init__.py
│ │ ├──clean_sharegpt.py
│ │ ├──convert_alpaca.py
│ │ ├──extract_gpt4_only.py
│ │ ├──extract_single_round.py
│ │ ├──filter_wrong_format.py
│ │ ├──get_stats.py
│ │ ├──hardcoded_questions.py
│ │ ├──inspect_data.py
│ │ ├──merge.py
│ │ ├──optional_clean.py
│ │ ├──optional_replace.py
│ │ ├──prepare_all.py
│ │ ├──pretty_json.py
│ │ ├──sample.py
│ │ ├──split_long_conversation.py
│ │ └── split_train_test.py
│ ├── eval
│ │ └── eval_model.py
│ ├── model
│ │ ├── GraphEdit.py
│ │ ├── __init__.py
│ │ ├── apply_delta.py
│ │ ├── apply_lora.py
│ │ ├── compression.py
│ │ ├── convert_fp16.py
│ │ ├── llama_condense_monkey_patch.py
│ │ ├── make_delta.py
│ │ ├── model_adapter.py
│ │ ├── model_chatglm.py
│ │ ├── model_codet5p.py
│ │ ├── model_exllama.py
│ │ ├── model_falcon.py
│ │ ├── model_registry.py
│ │ ├── monkey_patch_non_inplace.py
│ │ ├── rwkv_model.py
│ │ └── upload_hub.py
│ ├── modules
│ │ ├── __init__.py
│ │ ├── awq.py
│ │ ├── exllama.py
│ │ └── gptq.py
│ ├── protocol
│ │ ├── api_protocol.py
│ │ └── openai_api_protocol.py
│ ├── serve
│ │ ├── gateway
│ │ │ ├── README.md
│ │ │ └── nginx.conf
│ │ ├── monitor
│ │ │ ├── dataset_release_scripts
│ │ │ │ ├── arena_33k
│ │ │ │ │ ├── count_unique_users.py
│ │ │ │ │ ├── filter_bad_conv.py
│ │ │ │ │ ├── merge_field.py
│ │ │ │ │ ├── sample.py
│ │ │ │ │ └── upload_hf_dataset.py
│ │ │ │ └── lmsys_chat_1m
│ │ │ │ ├── approve_all.py
│ │ │ │ ├── compute_stats.py
│ │ │ │ ├── filter_bad_conv.py
│ │ │ │ ├── final_post_processing.py
│ │ │ │ ├── instructions.md
│ │ │ │ ├── merge_oai_tag.py
│ │ │ │ ├── process_all.sh
│ │ │ │ ├── sample.py
│ │ │ │ └── upload_hf_dataset.py
│ │ │ ├── basic_stats.py
│ │ │ ├── clean_battle_data.py
│ │ │ ├── clean_chat_data.py
│ │ │ ├── elo_analysis.py
│ │ │ ├── inspect_conv.py
│ │ │ ├── intersect_conv_file.py
│ │ │ ├── leaderboard_csv_to_html.py
│ │ │ ├── monitor.py
│ │ │ ├── summarize_cluster.py
│ │ │ ├── tag_openai_moderation.py
│ │ │ └── topic_clustering.py
│ │ ├── __init__.py
│ │ ├── api_provider.py
│ │ ├── base_model_worker.py
│ │ ├── cli.py
│ │ ├── controller.py
│ │ ├── gradio_block_arena_anony.py
│ │ ├── gradio_block_arena_named.py
│ │ ├── gradio_web_server.py
│ │ ├── gradio_web_server_multi.py
│ │ ├── huggingface_api.py
│ │ ├── huggingface_api_worker.py
│ │ ├── inference.py
│ │ ├── launch_all_serve.py
│ │ ├── model_worker.py
│ │ ├── multi_model_worker.py
│ │ ├── openai_api_server.py
│ │ ├── register_worker.py
│ │ ├── shutdown_serve.py
│ │ ├── test_message.py
│ │ ├── test_throughput.py
│ │ └── vllm_worker.py
│ ├── train
│ │ ├── GraphEdit_trainer.py
│ │ ├── llama2_flash_attn_monkey_patch.py
│ │ ├── llama_flash_attn_monkey_patch.py
│ │ ├── llama_xformers_attn_monkey_patch.py
│ │ ├── train.py
│ │ ├── train_baichuan.py
│ │ ├── train_flant5.py
│ │ ├── train_lora.py
│ │ ├── train_lora_t5.py
│ │ ├── train_mem.py
│ │ └── train_xformers.py
│ ├── __init__.py
│ ├── constants.py
│ ├── conversation.py
│ └── utils.py
├── playground
│ ├── test_embedding
│ │ ├── README.md
│ │ ├── test_classification.py
│ │ ├── test_semantic_search.py
│ │ └── test_sentence_similarity.py
│ ├── deepspeed_config_s2.json
│ └── deepspeed_config_s3.json
├── scripts
│ ├── apply_lora.py
│ ├── create_ins.py
│ ├── eval.sh
│ ├── get_embs.py
│ ├── result2np.py
│ └── train_lora.sh
├── tests
│ ├── killall_python.sh
│ ├── launch_openai_api_test_server.py
│ ├── test_cli.py
│ ├── test_cli_inputs.txt
│ ├── test_openai_api.py
│ └── test_openai_langchain.py
├── .pylintrc
├── LICENSE
├── format.sh
└── pyproject.toml
0. Python Environment Setup
- Packed conda environment is provided here (NVIDIA GeForce RTX 3090)
conda create --name GraphEdit python=3.8
conda activate GraphEdit
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0
pip install torch_geometric
pip install dgl
pip install transformers==4.31.0
pip install flash_attn==1.0.4
1. Download TAG datasets
Dataset | Description |
---|---|
Pubmed | Download the dataset here, unzip and move it to GNN/datasets/pubmed |
Citeseer | Download the dataset here, unzip and move it to GNN/datasets/citeseer |
Cora | Download the dataset here, unzip and move it to GNN/datasets/cora |
2. Getting Started
- Replace the system path in
eval_model.py
,train_lora.py
andget_embs.py
with your path.
Stage-1: Instruction tuning the LLM
- Vicuna-7b can get from the huggingface.
- Trained Lora models are provided here.
cd GraphEdit/LLM/
sh scripts/train_lora.sh
python scripts/apply_lora.py
Stage-2: Get the candidate structure
- Trained edge predictors are provided here
python scripts/get_embs.py
cd ../GNN/
python train_edge_predictor.py
python predict_edge.py --combine True
Stage-3: Refine the candidate structure
cd ../LLM/
python scripts/create_ins.py
sh scripts/eval.sh
python scripts/result2np.py
Stage-4: Eval the refined structure
- Refined structrues are provided here
cd ../GNN/
python main.py
3. Instruction Template
Pubmed
Based on the title and abstract of the two papers. Do they belong to the same category among Diabetes Mellitus Type 1, Diabetes Mellitus Type 2, or Diabetes Mellitus, Experimental? If the answer is \"True\", answer \"True\" and the category, otherwise answer \"False\". The first paper: {pubmed.raw_texts[paperID_0]} The second paper: {pubmed.raw_texts[paperID_1]}.
Citeseer
Based on the title and abstract of the two papers. Do they belong to the same category among Agent, ML, IR, DB, HCI and AI? If the answer is \"True\", answer \"True\" and the category, otherwise answer \"False\". The first paper: {citeseer.raw_texts[paperID_0]} The second paper: {citeseer.raw_texts[paperID_1]}.
Cora
Based on the title and abstract of the two papers. Do they belong to the same category among Rule_Learning, Neural_Networks, Case_Based, Genetic_Algorithms, Theory, Reinforcement_Learning or Probabilistic_Methods? If the answer is \"True\", answer \"True\" and the category, otherwise answer \"False\". If there is insufficient text information, answer \"True\". The first paper: Title: {cora.raw_text[paperID_0].split(':')[0]} Abstract: {cora.raw_text[paperID_0].split(':')[1]} The second paper: Title: {cora.raw_text[paperID_1].split(':')[0]} Abstract: {cora.raw_text[paperID_1].split(':')[1]}.
Citation
@article{guo2024graphedit,
title={GraphEdit: Large Language Models for Graph Structure Learning},
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Yuling Wang and Zixuan Yang and Wei Wei and Liang Pang and Tat-Seng Chua and Chao Huang},
year={2024},
eprint={2402.15183},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Acknowledgement
The structure of the LLM in this code is largely based on FastChat. And the original TAG datasets are provided by Graph-LLM. Thanks for their work.