Awesome
Transductive Few-Shot Classification on the Oblique Manifold
Introduction
The folders contain the code for paper Transductive Few-Shot Classification on the Oblique Manifold.
Environment
numpy==1.18.5
torch==1.7.0
Pillow==7.2.0
torchvision==0.8.0
tqdm==4.46.0
Train
For example:
5-way 5-shot
with resnet18
in mini-ImageNet
:
python train.py --n_way 5 --k_shot 5 --k_query 15 --skip False --dataset mini --backbone resnet18 --gpu 0,1,2
\
5-way 1-shot
with WRN
in tiered-ImageNet
:
python train.py --n_way 5 --k_shot 1 --k_query 15 --skip False --dataset tiered --backbone wideres --gpu 0,1,2
\
Use the Pretrained Models
Move the models to folder checkpoint
, and change the argument skip
with value True
:
For example:
5-way 5-shot
with resnet18
in mini-ImageNet
:
python train.py --n_way 5 --k_shot 5 --k_query 15 --skip True --dataset mini --backbone resnet18 --gpu 0,1,2
\
5-way 1-shot
with WRN
in tiered-ImageNet
:
python train.py --n_way 5 --k_shot 1 --k_query 15 --skip True --dataset tiered --backbone wideres --gpu 0,1,2
\