Awesome
SCAN: Semi-supervisedly Co-embedding Attributed Networks
This repository contains the Python&Pytorch implementation for SCAN. Further details about SCAN can be found in this paper:
Zaiqiao Meng, Shangsong Liang, Jinyuan Fang, Teng Xiao. Semi-supervisedly Co-embedding Attributed Networks. (NeurIPS 2019)
The orignal tensorflow implementation for SCAN can be found in SCAN
Requirements
=================
- Pytorch (1.0 or later)
- python 3.6/3.7
- scikit-learn
- scipy
Run the demo
=================
python train.py
Result
The Link prediction performance AUC&AP score :
Dataset | AUC | AP |
---|---|---|
BLOGCATALOG | 0.844 | 0.850 |
CORA | 0.972 | 0.972 |
FLICKR | 0.889 | 0.906 |
The Attribute inference performance AUC&AP score :
Dataset | AUC | AP |
---|---|---|
BLOGCATALOG | 0.886 | 0.888 |
CORA | 0.822 | 0.838 |
FLICKR | 0.864 | 0.859 |
The node classification performance accuracy :
Dataset | ACC of SCVA_SVM | ACC of SCVA_DIS |
---|---|---|
BLOGCATALOG | 0.834 | 0.844 |
CORA | 0.736 | 0.822 |
FLICKR | 0.695 | 0.800 |