Awesome
EdgeTrans4Mark
pytorch implementation of ECCV2022 "One-Shot Medical Landmark Localization by Edge-Guided Transform and Noisy Landmark Refinement"
Dataset
Download image & annotations from IEEE ISBI2015 Challenge. Or use provided data copy DATA COPY(file extraction code: xjvh) with converted coco format annotations. Then place this dataset under /data folder.
${ROOT}
`-- data
`-- cephalometric
`-- pretrained_models
`-- hrnetv2_w18_imagenet_pretrained.pth
Requirements
conda create -n landmark python==3.6.3
pip install -r requirements.txt
For torch and torchvision, you can find whl in pytorch_whl and pip install offline.
Training & Testing
- train stage1
CUDA_VISIBLE_DEVICES=0,1 python3 scripts/train_st1.py \
--cfg experiments/cephalometric/train_st1.yaml \
--gpus 0,1
- use stage1 model to infer label
CUDA_VISIBLE_DEVICES=0 python3 scripts/test_st1.py \
--model [BEST STAGE1 MODEL] \
--cfg experiments/cephalometric/train_st1.yaml \
--gpus 0 --local-iter 4 --infer-train
- train stage2
CUDA_VISIBLE_DEVICES=0,1 python3 scripts/train_st2.py \ --cfg experiments/cephalometric/train_st2.yaml \
--gpus 0,1
Acknowledgements
Great thanks for the following works and their opensource codes HRNet, DETR.