Home

Awesome

CDGNet-Parsing

This repository contains the code and model to support the generation of the parsing data required for the project.

Requirements

Python 3.7

Pytorch 1.9.0

Installation

You can replace the last command from the bottom to install pytorch based on your CUDA version.

git clone https://github.com/Gait3D/CDGNet-Parsing.git
cd CDGNet-Parsing
conda create -n py37torch190 python=3.7
conda activate py37torch190
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch
pip install tqdm opencv-python

Download Model

model_best.pth

Input Structure

Please put your dataset folder and make them follow this structure:

 |-- INPUT_PATH
    |-- name1.jpg
    |-- name2.jpg
    |-- ...
    |-- namex.jpg

Configurations

In the run_inference.sh, you should change the following four parameters:

(1) Modify the input path

INPUT_PATH='/your/path/to/input'

(2) Modify the model path

SNAPSHOT_FROM='/your/path/to/model_best.pth'

(3) Modify the output path

OUTPUT_PATH='/your/path/to/output'

(4) Output the visual results (Optional)

VIS='yes'

Usage

When you have finished the above configurations, run the following command:

sh run_inference.sh

Output Structure

|-- OUTPUT_PATH
   |--Pred_parsing_results
      |-- name1.jpg
      |-- name2.jpg
      |-- ...
      |-- namex.jpg
   |--Pred_parsing_results_vis
      |-- name1.jpg
      |-- name2.jpg
      |-- ...
      |-- namex.jpg

Acknowledge

CDGNet