Awesome
Multilingual Supervised Instruction Fine-tuning
This repo aims to provide the data, models, evaluation benchmark for multilingual instruction fine-tuning.
📚 Data
We translate Alpaca-GPT4 and Evol-Instruct from English to languages using GPT-3.5 Turbo, where
- For Alpaca-GPT4, we directly translate the instructions and responses.
- For Evol-Instruct, we translate the instructions and use to generate the responses using the translated instructions.
- For ShareGPT, we translate the English data from ShareGPT to other languages (Note: Due to the large scale of ShareGPT, we have yet to translate all the data).
Language | Alpaca-GPT4 | Evol-instruct | ShareGPT |
---|---|---|---|
Chinese | [huggingface] | [huggingface] | [huggingface] |
Japanese | [huggingface] | [huggingface] | [huggingface] |
Korean | [huggingface] | [huggingface] | [huggingface] |
German | [huggingface] | [huggingface] | [huggingface] |
French | [huggingface] | [huggingface] | [huggingface] |
Italian | [huggingface] | [huggingface] | [huggingface] |
Arabic | [huggingface] | [huggingface] | [huggingface] |
Portuguese | [huggingface] | [huggingface] | [huggingface] |
Spanish | [huggingface] | [huggingface] | [huggingface] |
Hindi | [huggingface] | [huggingface] | [huggingface] |
Indonesian | [huggingface] | [huggingface] | [huggingface] |
🤖 Models
CLI Interation
python -m src.deploy.cli --model-path /path/to/weights/
For example, you can use FreedomIntelligence/phoenix-multiple-langs-v1 fine-tuned on eight languages (English
, Chinese
, French
, Spanish
, Portuguese
, Arabic
, Indonesian
, Hindi
):
python -m src.deploy.cli --model-path FreedomIntelligence/phoenix-multiple-langs-v1
Deployment
- Launch a controller
python -m src.deploy.webapp.controller
- Launch a model worker
python -m src.deploy.webapp.model_worker --model-path /path/to/weights/
- Launch a gradio web server
python -m src.deploy.webapp.gradio_web_server
Now, you can open your browser and chat with a model.
Training
Specify the train_data_path
and val_data_path
and then run
bash scripts/train.sh
💯 Evaluation Benchmark
Evaluation Data
Language | MMLU |
---|---|
Chinese | [huggingface] |
Japanese | [huggingface] |
Korean | [huggingface] |
German | [huggingface] |
French | [huggingface] |
Italian | [huggingface] |
Arabic | [huggingface] |
Portuguese | [huggingface] |
Spanish | [huggingface] |
Hindi | [huggingface] |
Indonesian | [huggingface] |
Evaluation
- For MMLU
bash scripts/eval_mmlu.sh ${LANGUAGE} ${MODEL_PATH} ${MODEL_ID}
- For Vicuna-80
bash scripts/eval_vicuna-80.sh ${LANGUAGE} ${MODEL_PATH} ${MODEL_ID}
Citation
If you find this repository helpful, please cite the repository below.
@software{Chen_MultilingualSIFT_Multilingual_Supervised_2023,
author = {Chen, Zhihong and Yan, Shuo and Liang, Juhao and Jiang, Feng and Wu, Xiangbo and Yu, Fei and Chen, Guiming Hardy and Chen, Junying and Zhang, Hongbo and Li Jianquan and Wan Xiang and Wang, Benyou},
month = jul,
title = {{MultilingualSIFT: Multilingual Supervised Instruction Fine-tuning}},
url = {https://github.com/FreedomIntelligence/MultilingualSIFT.git},
version = {0.1},
year = {2023}
}