Home

Awesome

Long-Context Data Engineering

<p align="center" width="100%"> <a ><img src="assets/logo.jpg" alt="logo" style="width: 60%; min-width: 300px; display: block; margin: auto;"></a> </p>

ChatGPT-4 Dalle-3 Prompt: "Draw a carton style logo showing a very very long paper"

<p align="center"> 🤗 <a href="https://huggingface.co/yaofu/llama-2-7b-80k" target="_blank">HF Repo</a> • 📃 <a href="https://arxiv.org/abs/2402.10171" target="_blank">Paper</a> • 💿 <a href="https://huggingface.co/datasets/yaofu/slimpajama-per-source-length-upsample" target="_blank">Data</a> </p>

Implementation of paper:

<p align="center" width="100%"> <a ><img src="assets/needle.jpg" alt="logo" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p> Our model is the first public work showing how to achieve GPT-4 level long-context retrieval performance.

Table of Content

Download the model to local

Create a folder to download the model.

pip install -r requirements.txt # pytorch is not included here because we assume you have already installed pytorch
mkdir ../llama-2-7b-80k
mkdir ../llama-2-13b-64k

Download the continue pretrained checkpoint to local

from huggingface_hub import snapshot_download

snapshot_download(repo_id='yaofu/llama-2-7b-80k',
                  local_dir='../llama-2-7b-80k',
                  repo_type='model',
                  local_dir_use_symlinks=False,
                  resume_download=True)

snapshot_download(repo_id='yaofu/llama-2-13b-64k',
                  local_dir='../llama-2-13b-64k',
                  repo_type='model',
                  local_dir_use_symlinks=False,
                  resume_download=True)

We recommend you download the checkpoint to local first, instead of directly loading from HF, like the following:

from transformers import AutoModelForCausalLM
# Below is slow and hard to control in a cluster
# Unless you insist, **we recommend you download the model to local first**
model = AutoModelForCausalLM.from_pretrained("yaofu/llama-2-7b-80k", 
                                             use_flash_attention_2="flash_attention_2", 
                                             torch_dtype=torch.bfloat16
                                             ) 

Load the continue pretrained checkpoint and play with it

The following code requries at least 8x4090 to support 80K context. If you have 4x80G A100 you can make it to at least 128K

We use tensor_parallel implemented from this repo because it is much faster than huggingface's device_map and lightweight than vLLM. But it has a small bug that if your GPU memory is not large enough, it will stuck instead of through a memory overflow exception. So make sure you do have enough GPU memory.

import torch 
import tensor_parallel as tp
from transformers import AutoModelForCausalLM, AutoTokenizer
from eval.needle.utils import load_context, insert_needle

# This is the continue pretrained LLaMA 2 7B model with modified rope
def reset_rope(model, model_max_train_len, scaling_factor):
    for l in model.model.layers:
        l.self_attn.rotary_emb.scaling_factor = scaling_factor
        l.self_attn.rotary_emb._set_cos_sin_cache(seq_len=model_max_train_len, device="cpu", dtype=torch.float32)
    return
model = AutoModelForCausalLM.from_pretrained("../llama-2-7b-80k",
                                             use_flash_attention_2="flash_attention_2", 
                                             torch_dtype=torch.bfloat16
                                             ) # requires about 14G disk size in $HF_HOME
scaling_factor = 10 # hardcode here
reset_rope(model, model_max_train_len=81920, scaling_factor=scaling_factor)
model = tp.tensor_parallel(model, sharded=True)

# Construct the Needle-in-a-HayStack Prompt
needle = "\nThe best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.\n"
ctx_len = 100000 # need at least 8*4090 to run this length
depth = 0.5
context = load_context(fpath="eval/needle/PaulGrahamEssays/*.txt", ctx_len=ctx_len)
context = insert_needle(context, needle, depth=depth)
needle_idx = context.find("The best thing to do in San Francisco is")
print("Context has %d chars, needle inserted at %d char location:\n" % (len(context), needle_idx))
print(context[needle_idx - 150: needle_idx + 150]) # look at how the needle is inserted 

prompt ="\n<|im_start|> This is a very long story book: <book> %s </book>.\n" % context
question = "What is the best thing to do in San Francisco?"
prompt += "Based on the content of the book, Question: %s\nAnswer:" % question
print(prompt) # feel the length of 100K

# Check how the model performs
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
prompt = tokenizer(prompt, return_tensors="pt")
input_ids = prompt['input_ids'].to(model.device)
print("After tokenization, there is %d tokens" % len(input_ids[0]))
with torch.no_grad():
    output_ids = model.generate(input_ids, max_new_tokens=50)
    response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print("Response:", response.split("\n")[0])

Evaluate the pretrained checkpoint on the Needle-in-a-Haystack test

The evaluation requires 4*80G A100, and takes about/ less than 24 hours to finish. The inference code can be further optimized by optimizing the tokenizer speed (tokenizing a document of 100K tokens takes a lot of time), though we leave it to future work.

cd eval/needle
mkdir logs img results

(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
    --model_provider LLaMA\
    --model_path ../../../llama-2-7b-80k
) 2>&1  | tee logs/eval_llama-2-7b-80k.log

python visualize.py 

Evaluate the pretrained checkpoint on the BookQA dataset from InfiniBench

Code and data adapted from InfiniBench original author

cd eval/book
mkdir data

Then download longbook_qa_eng.json from here and put it under the data folder.

(
python -u eval_book.py --task longbook_qa_eng\
    --verbose\
    --model_path ../../../llama-2-7b-80k\
    --data_dir data\
    --model_name llama\
    --truncate 128000
) 2>&1  | tee logs/eval_llama_7b_80k_test_to_128k.log

Caveat: there are two versions of longbook_qa_eng

Load the preprocessed data

The following code requires 60G disk size in the $HF_CACHE folder. The data is processed from SlimPajama using per-source length-upsampling described in our paper section 3. We have already tokenized and chunked the data in the following format:

<p align="center" width="100%"> <a ><img src="assets/chunking.jpg" alt="logo" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p>
import datasets
from transformers import AutoTokenizer
dataset = datasets.load_dataset("yaofu/slimpajama-per-source-length-upsample")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

d = dataset["train"][0]
print(d.keys())
print(d["source"])
print(len(d["input_ids"])) ## all input_ids are chunks of length 131072

doc_id = 0
doc_start, doc_end = d["source"][doc_id]["start"], d["source"][doc_id]["end"]
print(tokenizer.decode(d["input_ids"][doc_start: doc_end]))

doc_id = 1
doc_start, doc_end = d["source"][doc_id]["start"], d["source"][doc_id]["end"]
print(tokenizer.decode(d["input_ids"][doc_start: doc_end]))

Alternatively, you may use the streaming=True mode to avoid the long downloading time. But we do recommend downloading the model first because it will save a lot of time when you load the dataset at the second time.

import datasets
from transformers import AutoTokenizer
dataset = datasets.load_dataset("yaofu/slimpajama-per-source-length-upsample", streaming=True)
it = iter(dataset["train"])
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

d = next(it)
print(d.keys())
print(d["source"])
print(len(d["input_ids"])) ## all input_ids are chunks of length 131072

doc_id = 0
doc_start, doc_end = d["source"][doc_id]["start"], d["source"][doc_id]["end"]
print(tokenizer.decode(d["input_ids"][doc_start: doc_end]))

doc_id = 1
doc_start, doc_end = d["source"][doc_id]["start"], d["source"][doc_id]["end"]
print(tokenizer.decode(d["input_ids"][doc_start: doc_end]))

Generate the per-source length upsampled data

We recommend first download the SlimPajama data to local. First make a folder

mkdir ../SlimPajama-627B

Then download. This requires about 1.8T disk size and takes quite a while to download. Remember that this is not finetuning, so be patient.

from huggingface_hub import snapshot_download

snapshot_download(repo_id='cerebras/SlimPajama-627B',
                  local_dir='../SlimPajama-627B',
                  repo_type='dataset',
                  local_dir_use_symlinks=False,
                  resume_download=True)

Then generate the per-source length upsampled data. In our practice we down-sample sequences shorter than 4K. Note that this is equivalent to upsampling sequences longer than 4K. We use multi-processing: there are 200 tokenizer process, a read process (which is also the main process) and a write process. The main process reads the data streamingly, then asks which tokenizer process is free. If there is a free tokenizer process, it assigns the current document to that process, otherwise it waits and keeps asking. A tokenizer process receives the document from the main process, tokenizes it, then sends the tokens to the writer process. The writer process continuously receives the tokenized data from all tokenizer processes, and writes them into a .jsonl file. The following code requries about 200 CPU cores, 50G CPU memory. Tokenizing 5B tokens takes about 1 hour. If you do not use multi-processing like we do, you will need about two days for tokenization.

mkdir logs
mkdir data
mkdir data/slimpajama
mkdir data/slimpajama/per_source_downsample
cd data_engineering

PATH_TO_SLIMPAJAMA=../SlimPajama-627B
nohup python -u slimpajama_packing.py\
    --dataset_size=100m\
    --print_interval=100 --num_process=200\
    --dataset_path=$PATH_TO_SLIMPAJAMA\
    --output_path=../data/slimpajama/per_source_downsample/ --down_sample_ratio=0.1 --down_sample_mode=per_source\
    > ../logs/slimpajama_packing_dist_per_source_downsample_0.1.log 2>&1 &
tail -f ../logs/slimpajama_packing_dist_per_source_downsample_0.1.log

The --dataset_size 100m is for a quick demo. Change it to --dataset_size 5B to reproduce our training data.