Awesome
<div align="center">[NeurIPS 2024] TopoLogic: An Interpretable Pipeline for Lane Topology Reasoning on Driving Scenes
</div>
- Production from Institute of Computing Technology, Chinese Academy of Sciences.
- Primary contact: Yanping Fu ( fuyanping23s@ict.ac.cn ) or/and Xinyuan Liu.
TL;DR
This repository contains the source code of TopoLogic, An Interpretable Pipeline for Lane Topology Reasoning on Driving Scenes.
TopoLogic is the first to employ an interpretable approach for lane topology reasoning. TopoLogic fuses the geometric distance of lane line endpoints mapped through a designed function and the similarity of lane query in a high-dimensional semantic space to reason lane topology. Experiments on the large-scale autonomous driving dataset OpenLane-V2 benchmark demonstrate that TopoLogic significantly outperforms existing methods in topology reasoning in complex scenarios.
Updates
- [2024.10.6] Code and Model are released.
- [2024.9.26] TopoLogic is accepted by NeurIPS 2024.
- [2024.5.23] TopoLogic paper is released at arXiv
Table of Contents
Model Zoo
Method | Backbone | Epoch | Dataset | OLS | Version | Config | Download |
---|---|---|---|---|---|---|---|
TopoLogic | ResNet-50 | 24 | subset-A | 44.1 | OpenLane-V2-v2.1.0 | config | ckpt / log |
Main Results
The result is based on the
v1.0.0
OpenLane-V2 devkit and metrics.
Results on OpenLane-V2 subset-A val
We provide results on Openlane-V2 subset-A val set.
Method | Backbone | Epoch | SDMap | DET<sub>l</sub> | TOP<sub>ll</sub> | DET<sub>t</sub> | TOP<sub>lt</sub> | OLS |
---|---|---|---|---|---|---|---|---|
STSU | ResNet-50 | 24 | × | 12.7 | 0.5 | 43.0 | 15.1 | 25.4 |
VectorMapNet | ResNet-50 | 24 | × | 11.1 | 0.4 | 41.7 | 6.2 | 20.8 |
MapTR | ResNet-50 | 24 | × | 8.3 | 0.2 | 43.5 | 5.8 | 20.0 |
MapTR* | ResNet-50 | 24 | × | 17.7 | 1.1 | 43.5 | 10.4 | 26.0 |
TopoNet | ResNet-50 | 24 | × | 28.6 | 4.1 | 48.6 | 20.3 | 35.6 |
TopoLogic | ResNet-50 | 24 | × | 29.9 | 18.6 | 47.2 | 21.5 | 41.6 |
SMERF | ResNet-50 | 24 | √ | 33.4 | 7.5 | 48.6 | 23.4 | 39.4 |
TopoLogic | ResNet-50 | 24 | √ | 34.4 | 23.4 | 48.3 | 24.4 | 45.1 |
The result of TopoLogic is from this repo.
Results on OpenLane-V2 subset-B val
Method | Backbone | Epoch | DET<sub>l</sub> | TOP<sub>ll</sub> | DET<sub>t</sub> | TOP<sub>lt</sub> | OLS |
---|---|---|---|---|---|---|---|
TopoLogic | ResNet-50 | 24 | 25.9 | 15.1 | 54.7 | 15.1 | 39.6 |
The result is based on the updated
v2.1.0
OpenLane-V2 devkit and metrics.
The result of TopoLogic is from this repo.
Method | Backbone | Epoch | DET<sub>l</sub> | TOP<sub>ll</sub> | DET<sub>t</sub> | TOP<sub>lt</sub> | OLS |
---|---|---|---|---|---|---|---|
TopoLogic | ResNet-50 | 24 | 29.9 | 23.9 | 47.2 | 25.4 | 44.1 |
Prerequisites
- Linux
- Python 3.8.x
- NVIDIA GPU + CUDA 11.1
- PyTorch 1.9.1
Installation
We recommend using conda to run the code.
conda create -n topologic python=3.8 -y
conda activate topologic
# (optional) If you have CUDA installed on your computer, skip this step.
conda install cudatoolkit=11.1.1 -c conda-forge
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
Install other required packages.
pip install -r requirements.txt
Prepare Dataset
Following OpenLane-V2 repo to download the data and run the preprocessing code.
Train and Evaluate
Train
We recommend using 8 GPUs for training. If a different number of GPUs is utilized, you can enhance performance by configuring the --autoscale-lr
option. The training logs will be saved to work_dirs/[work_dir_name]
.
cd TopoLogic
mkdir work_dirs
./tools/dist_train.sh 8 [work_dir_name] [--autoscale-lr]
Evaluate
You can set --show
to visualize the results.
./tools/dist_test.sh 8 [work_dir_name] [--show]
Citation
If this work is helpful for your research, please consider citing the following BibTeX entry.
@misc{fu2024topologic,
title={TopoLogic: An Interpretable Pipeline for Lane Topology Reasoning on Driving Scenes},
author={Yanping Fu and Wenbin Liao and Xinyuan Liu and Hang xu and Yike Ma and Feng Dai and Yucheng Zhang},
year={2024},
eprint={2405.14747},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Similar work
@INPROCEEDINGS{10588515,
author={Jia, Peijin and Wen, Tuopu and Luo, Ziang and Fu, Zheng and Liao, Jiaqi and Chen, Huixian and Jiang, Kun and Yang, Mengmeng and Yang, Diange},
booktitle={2024 IEEE Intelligent Vehicles Symposium (IV)},
title={LaneDAG: Automatic HD Map Topology Generator Based on Geometry and Attention Fusion Mechanism},
year={2024},
volume={},
number={},
pages={1015-1021},
keywords={Point cloud compression;Visualization;Statistical analysis;Navigation;Intelligent vehicles;Roads;Feature extraction},
doi={10.1109/IV55156.2024.10588515}}
Related resources
We acknowledge all the open-source contributors for the following projects to make this work possible: