Awesome
POS Tagger
Build a POS Tagger for Lao and Bahasa Indonesia
2020云山杯“低资源语言序列标注任务评测”任务:印尼语和老挝语词性标注
..云山
<img src='https://upload.thwiki.cc/thumb/a/af/%E4%BA%91%E5%B1%85%E4%B8%80%E8%BD%AE%26%E4%BA%91%E5%B1%B1%EF%BC%88%E6%B1%82%E9%97%BB%E5%8F%A3%E6%8E%88%EF%BC%89.png/450px-%E4%BA%91%E5%B1%85%E4%B8%80%E8%BD%AE%26%E4%BA%91%E5%B1%B1%EF%BC%88%E6%B1%82%E9%97%BB%E5%8F%A3%E6%8E%88%EF%BC%89.png' height="300px">
版本说明
- kashigari v2.0.1 (需要 tensorflow>=2.2.0,2.4.0以上会有warning,目前不影响运行)
结构说明
- corpus 语料文件夹
- reference 词性对照表等 参考资料
- output 模型输出
- preprocess 语料预处理
- dataset_split.py 挑选训练/验证/测试集
- format_process.py 调整语料格式
- process_test.py 测试集的预处理
- utils.py 工具包(与模型训练无直接关联的工作)
- run.py 模型训练
框架修改
基于kashgari框架进行了一些修改,以便于适配词性识别
- 更改 .../kashgari/metrics/sequence_labeling.py 中的get_entities()函数如下
def get_entities(seq: List[str], *, suffix: bool = False) -> List[Tuple[str, int, int]]:
"""Gets entities from sequence.
Args:
seq: sequence of labels.
suffix:
Returns:
list: list of (chunk_type, chunk_start, chunk_end).
Example:
>>> from kashgari.metrics.sequence_labeling import get_entities
>>> seq = ['B-PER', 'I-PER', 'O', 'B-LOC']
>>> get_entities(seq)
[('PER', 0, 1), ('LOC', 3, 3)]
"""
prev_tag = 'O'
prev_type = ''
begin_offset = 0
chunks = []
for i, chunk in enumerate(seq + ['O']):
# if suffix:
# tag = chunk[-1]
# type_ = chunk.split('-')[0]
# else:
# tag = chunk[0]
# type_ = chunk.split('-')[-1]
#
# if end_of_chunk(prev_tag, tag, prev_type, type_):
# chunks.append((prev_type, begin_offset, i - 1))
# if start_of_chunk(prev_tag, tag, prev_type, type_):
# begin_offset = i
# prev_tag = tag
# prev_type = type_
chunks.append((chunk, i-1, i-1))
return chunks
结果 排名(队伍:DUFLER)
Ind | Lao | |
---|---|---|
acc | 90.31% | 85.13% |
算法说明 BiLSTM_CRF
总结:只能说很幸运😂