Home

Awesome

ComfyUI's ControlNet Auxiliary Preprocessors

Plug-and-play ComfyUI node sets for making ControlNet hint images

"anime style, a protest in the street, cyberpunk city, a woman with pink hair and golden eyes (looking at the viewer) is holding a sign with the text "ComfyUI ControlNet Aux" in bold, neon pink" on Flux.1 Dev

The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the 🤗 Hub.

All credit & copyright goes to https://github.com/lllyasviel.

Updates

Go to Update page to follow updates

Installation:

Using ComfyUI Manager (recommended):

Install ComfyUI Manager and do steps introduced there to install this repo.

Alternative:

If you're running on Linux, or non-admin account on windows you'll want to ensure /ComfyUI/custom_nodes and comfyui_controlnet_aux has write permissions.

There is now a install.bat you can run to install to portable if detected. Otherwise it will default to system and assume you followed ConfyUI's manual installation steps.

If you can't run install.bat (e.g. you are a Linux user). Open the CMD/Shell and do the following:

Nodes

Please note that this repo only supports preprocessors making hint images (e.g. stickman, canny edge, etc). All preprocessors except Inpaint are intergrated into AIO Aux Preprocessor node. This node allow you to quickly get the preprocessor but a preprocessor's own threshold parameters won't be able to set. You need to use its node directly to set thresholds.

Nodes (sections are categories in Comfy menu)

Line Extractors

Preprocessor Nodesd-webui-controlnet/otherControlNet/T2I-Adapter
Binary Linesbinarycontrol_scribble
Canny Edgecannycontrol_v11p_sd15_canny <br> control_canny <br> t2iadapter_canny
HED Soft-Edge Lineshedcontrol_v11p_sd15_softedge <br> control_hed
Standard Lineartstandard_lineartcontrol_v11p_sd15_lineart
Realistic Lineartlineart (or lineart_coarse if coarse is enabled)control_v11p_sd15_lineart
Anime Lineartlineart_animecontrol_v11p_sd15s2_lineart_anime
Manga Lineartlineart_anime_denoisecontrol_v11p_sd15s2_lineart_anime
M-LSD Linesmlsdcontrol_v11p_sd15_mlsd <br> control_mlsd
PiDiNet Soft-Edge Linespidinetcontrol_v11p_sd15_softedge <br> control_scribble
Scribble Linesscribblecontrol_v11p_sd15_scribble <br> control_scribble
Scribble XDoG Linesscribble_xdogcontrol_v11p_sd15_scribble <br> control_scribble
Fake Scribble Linesscribble_hedcontrol_v11p_sd15_scribble <br> control_scribble
TEED Soft-Edge Linesteedcontrolnet-sd-xl-1.0-softedge-dexined <br> control_v11p_sd15_softedge (Theoretically)
Scribble PiDiNet Linesscribble_pidinetcontrol_v11p_sd15_scribble <br> control_scribble
AnyLine LineartmistoLine_fp16.safetensors <br> mistoLine_rank256 <br> control_v11p_sd15s2_lineart_anime <br> control_v11p_sd15_lineart

Normal and Depth Estimators

Preprocessor Nodesd-webui-controlnet/otherControlNet/T2I-Adapter
MiDaS Depth Map(normal) depthcontrol_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth
LeReS Depth Mapdepth_lerescontrol_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth
Zoe Depth Mapdepth_zoecontrol_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth
MiDaS Normal Mapnormal_mapcontrol_normal
BAE Normal Mapnormal_baecontrol_v11p_sd15_normalbae
MeshGraphormer Hand Refiner (HandRefinder)depth_hand_refinercontrol_sd15_inpaint_depth_hand_fp16
Depth Anythingdepth_anythingDepth-Anything
Zoe Depth Anything <br> (Basically Zoe but the encoder is replaced with DepthAnything)depth_anythingDepth-Anything
Normal DSINEcontrol_normal/control_v11p_sd15_normalbae
Metric3D Depthcontrol_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth
Metric3D Normalcontrol_v11p_sd15_normalbae
Depth Anything V2Depth-Anything

Faces and Poses Estimators

Preprocessor Nodesd-webui-controlnet/otherControlNet/T2I-Adapter
DWPose Estimatordw_openpose_fullcontrol_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose
OpenPose Estimatoropenpose (detect_body) <br> openpose_hand (detect_body + detect_hand) <br> openpose_faceonly (detect_face) <br> openpose_full (detect_hand + detect_body + detect_face)control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose
MediaPipe Face Meshmediapipe_facecontrolnet_sd21_laion_face_v2
Animal Estimatoranimal_openposecontrol_sd15_animal_openpose_fp16

Optical Flow Estimators

Preprocessor Nodesd-webui-controlnet/otherControlNet/T2I-Adapter
Unimatch Optical FlowDragNUWA

How to get OpenPose-format JSON?

User-side

This workflow will save images to ComfyUI's output folder (the same location as output images). If you haven't found Save Pose Keypoints node, update this extension

Dev-side

An array of OpenPose-format JSON corresponsding to each frame in an IMAGE batch can be gotten from DWPose and OpenPose using app.nodeOutputs on the UI or /history API endpoint. JSON output from AnimalPose uses a kinda similar format to OpenPose JSON:

[
    {
        "version": "ap10k",
        "animals": [
            [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
            [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
            ...
        ],
        "canvas_height": 512,
        "canvas_width": 768
    },
    ...
]

For extension developers (e.g. Openpose editor):

const poseNodes = app.graph._nodes.filter(node => ["OpenposePreprocessor", "DWPreprocessor", "AnimalPosePreprocessor"].includes(node.type))
for (const poseNode of poseNodes) {
    const openposeResults = JSON.parse(app.nodeOutputs[poseNode.id].openpose_json[0])
    console.log(openposeResults) //An array containing Openpose JSON for each frame
}

For API users: Javascript

import fetch from "node-fetch" //Remember to add "type": "module" to "package.json"
async function main() {
    const promptId = '792c1905-ecfe-41f4-8114-83e6a4a09a9f' //Too lazy to POST /queue
    let history = await fetch(`http://127.0.0.1:8188/history/${promptId}`).then(re => re.json())
    history = history[promptId]
    const nodeOutputs = Object.values(history.outputs).filter(output => output.openpose_json)
    for (const nodeOutput of nodeOutputs) {
        const openposeResults = JSON.parse(nodeOutput.openpose_json[0])
        console.log(openposeResults) //An array containing Openpose JSON for each frame
    }
}
main()

Python

import json, urllib.request

server_address = "127.0.0.1:8188"
prompt_id = '' #Too lazy to POST /queue

def get_history(prompt_id):
    with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
        return json.loads(response.read())

history = get_history(prompt_id)[prompt_id]
for o in history['outputs']:
    for node_id in history['outputs']:
        node_output = history['outputs'][node_id]
        if 'openpose_json' in node_output:
            print(json.loads(node_output['openpose_json'][0])) #An list containing Openpose JSON for each frame

Semantic Segmentation

Preprocessor Nodesd-webui-controlnet/otherControlNet/T2I-Adapter
OneFormer ADE20K Segmentoroneformer_ade20kcontrol_v11p_sd15_seg
OneFormer COCO Segmentoroneformer_cococontrol_v11p_sd15_seg
UniFormer Segmentorsegmentationcontrol_sd15_seg <br> control_v11p_sd15_seg

T2IAdapter-only

Preprocessor Nodesd-webui-controlnet/otherControlNet/T2I-Adapter
Color Palletecolort2iadapter_color
Content Shuffleshufflet2iadapter_style

Recolor

Preprocessor Nodesd-webui-controlnet/otherControlNet/T2I-Adapter
Image Luminancerecolor_luminanceioclab_sd15_recolor <br> sai_xl_recolor_256lora <br> bdsqlsz_controlllite_xl_recolor_luminance
Image Intensityrecolor_intensityIdk. Maybe same as above?

Examples

A picture is worth a thousand words

Testing workflow

https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/examples/ExecuteAll.png Input image: https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/examples/comfyui-controlnet-aux-logo.png

Q&A:

Why some nodes doesn't appear after I installed this repo?

This repo has a new mechanism which will skip any custom node can't be imported. If you meet this case, please create a issue on Issues tab with the log from the command line.

DWPose/AnimalPose only uses CPU so it's so slow. How can I make it use GPU?

There are two ways to speed-up DWPose: using TorchScript checkpoints (.torchscript.pt) checkpoints or ONNXRuntime (.onnx). TorchScript way is little bit slower than ONNXRuntime but doesn't require any additional library and still way way faster than CPU.

A torchscript bbox detector is compatiable with an onnx pose estimator and vice versa.

TorchScript

Set bbox_detector and pose_estimator according to this picture. You can try other bbox detector endings with .torchscript.pt to reduce bbox detection time if input images are ideal.

ONNXRuntime

If onnxruntime is installed successfully and the checkpoint used endings with .onnx, it will replace default cv2 backend to take advantage of GPU. Note that if you are using NVidia card, this method currently can only works on CUDA 11.8 (ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z) unless you compile onnxruntime yourself.

  1. Know your onnxruntime build:

Note that if this is your first time using ComfyUI, please test if it can run on your device before doing next steps.

  1. Add it into requirements.txt

  2. Run install.bat or pip command mentioned in Installation

Assets files of preprocessors

2000 Stars 😄

<a href="https://star-history.com/#Fannovel16/comfyui_controlnet_aux&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date&theme=dark" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" /> </picture> </a>

Thanks for yalls supports. I never thought the graph for stars would be linear lol.