Home

Awesome

Masked Autoencoding for Scalable and Generalizable Decision Making

This is the official implementation for the paper Masked Autoencoding for Scalable and Generalizable Decision Making .

@inproceedings{liu2022masked,
    title={Masked Autoencoding for Scalable and Generalizable Decision Making},
    author={Liu, Fangchen and Liu, Hao and Grover, Aditya and Abbeel, Pieter},
    booktitle={Advances in Neural Information Processing Systems},
    year={2022}
}

Installation

Install the following libraries:

sudo apt update
sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3 unzip

Install dependencies:

conda env create -f conda_env.yml
conda activate maskdp

Dataset

Download precollected dataset

We provide the datasets used in the paper on HuggingFace. You can download the dataset with the command:

git clone git@hf.co:datasets/fangchenliu/maskdp_data

The dataset is organized in the following format:

├── maskdp_train
│   ├── cheetah
│   │   ├── expert # near-expert rollouts from TD3 policy
|   |   |   ├── cheetah_run
|   |   |   |   ├── 0.npy
|   |   |   |   ├── 1.npy
|   |   |   |   ├── ...
|   |   |   ├── cheetah_run_backwards
│   │   ├── sup # supervised data, full experience replay with extrinsic reward
|   |   |   ├── cheetah_run
|   |   |   ├── cheetah_run_backwards
│   │   ├── semi # semi-supervised data, full experience replay with extrinsic + intrinsic reward
|   |   |   ├── cheetah_run
|   |   |   ├── cheetah_run_backwards
│   │   ├── unsup # unsupervised data, full experience replay with intrinsic reward
|   |   |   ├── 0.npy
|   |   |   ├── 1.npy
|   |   |   ├── ...
│   ├── walker
...
│   ├── quadruped
...
├── maskdp_eval
│   ├── expert
│   │   ├── cheetah_run
│   │   ├── cheetah_run_backwards
│   │   ├── ...
│   │   ├── walker_stand
│   │   ├── quadruped_walk
│   │   ├── ...
│   ├── unsup
│   │   ├── cheetah
│   │   ├── walker
│   │   ├── quadruped

Collect your own dataset

If you want to customize your own dataset on different environments, please follow the instructions in the data_collection branch.

Example Scripts

We provide example scripts in train and eval folder to train or evaluate the model. Please modify the path to your local dataset.

Acknowledgement

Contact

If you have any questions, please open an issue or contact fangchen_liu@berkeley.edu.